Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1734-1740     CSTR: 32134.14.1005.4537.2025.050      DOI: 10.11902/1005.4537.2025.050
  研究报告 本期目录 | 过刊浏览 |
中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究
阮智邦1, 魏仕轩1, 王树鹏1, 吕正平2, 李格升1, 李燚周2()
1 武汉理工大学船海与能源动力工程学院 武汉 430070
2 中国海洋大学材料科学与工程学院 青岛 266100
Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution
RUAN Zhibang1, WEI Shixuan1, WANG Shupeng1, LV Zhengping2, LI Gesheng1, LI Yizhou2()
1 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China
2 College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

阮智邦, 魏仕轩, 王树鹏, 吕正平, 李格升, 李燚周. 中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
Zhibang RUAN, Shixuan WEI, Shupeng WANG, Zhengping LV, Gesheng LI, Yizhou LI. Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1734-1740.

全文: PDF(7155 KB)   HTML
摘要: 

采用电化学测试、扫描电子显微镜和分子动力学模拟计算等手段研究咪唑啉磷酸酯对7075铝合金电偶腐蚀的抑制行为。结果表明,7075铝合金中的AlCuFeMn相能够引起微电偶腐蚀效应,导致点蚀发生。当和X70钢偶接时,电偶效应能够显著加速局部腐蚀发展。加入咪唑啉磷酸酯后,无论是否与X70钢进行偶接,7075铝合金都表现为弱钝化特征,且浸泡以后7075铝合金表面均没发展成明显的局部腐蚀,说明咪唑啉磷酸酯对7075铝合金腐蚀及电偶腐蚀具有较好的抑制作用。通过分子动力学模拟计算表明,在Al、Fe、Cu和Al2O3表面的吸附能远远大于O2、Cl-、H2O和H3O+等侵蚀性物质的吸附能,在金属表面能够形成保护性的分子膜层,从而抑制铝合金的腐蚀。

关键词 缓蚀剂铝合金电偶腐蚀电化学测试    
Abstract

Herein, the inhibition effect of imidazoline phosphate on the galvanic corrosion of 7075 Al-alloy in 3.5%NaCl solution was investigated by means of electrochemical tests and scanning electron microscopy as well as molecular dynamics simulation. The results indicate that the AlCuFeMn phase within the 7075 Al-alloy can induce micro galvanic corrosion effects, leading to pitting corrosion. When coupled with X70 steel, the galvanic effect significantly accelerates the progression of local corrosion. After the addition of imidazoline phosphate, the 7075 Al-alloy exhibits weak passivation characteristics, regardless of it is coupled with X70 steel or not. Notably, no obvious local corrosion occurs on the surface of the 7075 Al-alloy after immersion, suggesting that imidazoline phosphate exhibits a positive inhibitory effect on the corrosion and galvanic corrosion of the 7075 Al-alloy. Molecular dynamics simulation reveals that the adsorption energy of inhibitor molecular on the surface of Al, Fe, Cu, and Al2O3 is considerably higher than that of corrosive substances such as O2, Cl-, H2O and H3O+. This suggests that a protective film may form on the metal surface, thereby inhibiting the corrosion of Al- alloys.

Key wordsinhibitor    Al-alloy    galvanic corrosion    electrochemical test
收稿日期: 2025-02-15      32134.14.1005.4537.2025.050
ZTFLH:  TG174  
基金资助:国家自然科学基金(52471101);国家自然科学基金(51901217)
通讯作者: 李燚周,E-mail:liyizhou@ouc.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: LI Yizhou, E-mail: liyizhou@ouc.edu.cn
作者简介: 阮智邦,男,1989年生,高级实验师
图1  SIP的分子结构
图2  7075-T651铝合金在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后的极化曲线
图3  7075-X70耦合试样在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后的极化曲线
图4  7075-T651铝合金和7075-X70耦合试样在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后的Nyquist图
图5  试样在未含和含有200 mg/L SIP的3.5%NaCl溶液中阻抗谱拟合的等效电路
SloutionRs / Ω·cm2Y0Qdl / Ω-1·cm-2·s nnRct / Ω·cm2Rl / Ω·cm2L
Without SIP8.3246.16 × 10-50.851351618.12131
With SIP8.9963.62 × 10-50.86339597777837
表1  7075-T651铝合金在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后阻抗谱拟合参数
SloutionRs / Ω·cm2Y0Qf / Ω-1·cm-2·snRf / Ω·cm2Y0Qdl / Ω-1·cm-2·s nnRct / Ω·cm2
Without SIP7.1192.825 × 10-50.8925401.431 × 10-30.99853.3
With SIP6.9282.7 × 10-50.9132414.67 × 10-40.937485
表2  7075-X70耦合试样在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后阻抗谱拟合参数
图6  7075-T651铝合金和7075-X70耦合试样在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后的极化电阻
图7  7075-T651铝合金在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后的微观腐蚀形貌
图8  7075-X70耦合试样在未含和含有200 mg/L SIP的3.5%NaCl溶液中浸泡24 h后的微观腐蚀形貌
图9  水溶液中SIP在不同材料表面的最终吸附构型
SurfaceH2OH3O+Cl-O2SIP
Al (111)-13.26-14.44-8.83-24.73-1608.25
Al2O3 (111)-20.36-655.97-16.36-53.89-1717.82
Fe (110)-25.65-26.23-19.29-53.64-2161.25
Cu (111)-14.52-12.85-9.16-27.78-1285.37
表3  SIP在不同材料表面的吸附能 (kJ/mol)
[1] Qiao Z, Li Q Q, Liu X H, et al. Effect of nitrate and galvanic couple on crevice corrosion behavior of 7075-T651 Al-alloy in neutral NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1047
[1] (乔 泽, 李清泉, 刘晓航 等. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1047)
[2] Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
[3] Cui T F, Liu D X, Shi P A, et al. Effect of NaCl concentration, pH value and tensile stress on the galvanic corrosion behavior of 5050 aluminum alloy [J]. Mater. Corros., 2016, 67: 72
[4] Xing S H, Li Y, Wharton J A, et al. Effect of dissolved oxygen and coupled resistance on the galvanic corrosion of Cr-Ni low-alloy steel/90-10 cupronickel under simulated deep sea condition [J]. Mater. Corros., 2017, 68: 1123
[5] Zhang G A, Yu N, Yang L Y, et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel [J]. Corros. Sci., 2014, 86: 202
[6] Zhu H X, Huang Z Y, Jin G F, et al. Effect of temperature on galvanic corrosion of Al 6061-SS 304 in nitric acid [J]. Energy Rep., 2022, 8(suppl.14): 112
[7] Du G, Lu G Q, Deng L H, et al. Effect of aluminum content on corrosion behavior of Ni-Al alloys in dilute sulfuric acid solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1011
[7] (杜 广, 芦国强, 邓龙辉 等. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2024, 44: 1011)
[8] Li Y, Tang Y X, Liu X H, et al. Insight into the crevice corrosion mechanism of AA7075-T651 high-strength aluminum alloys in neutral nitrate solution: the effect of Cl- [J]. Mater. Corros., 2024, 75: 1373
[9] Zheng X Z, Castaneda H, Gao H J, et al. Synergistic effects of corrosion and slow strain rate loading on the mechanical and electrochemical response of an aluminium alloy [J]. Corros. Sci., 2019, 153: 53
[10] Wang L W, Liang J M, Li H, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl- [J]. Corros. Sci., 2021, 178: 109076
[11] Zhang F, Nilsson J O, Pan J S. In situ and operando AFM and EIS studies of anodization of Al 6060: Influence of intermetallic particles [J]. J. Electrochem. Soc., 2016, 163: C609
[12] Wang Q L, Li H J. Study on anodic oxidation of 2099 aluminum lithium alloy and sealing treatment in environmental friendly solutions [J]. Int. J. Electrochem. Sci., 2023, 18: 100186
[13] Williams G, Coleman A J, Neil McMurray H. Inhibition of aluminium alloy AA2024-T3 pitting corrosion by copper complexing compounds [J]. Electrochim. Acta, 2010, 55: 5947
[14] Zhang S, Zhang T, He Y T, et al. Long-term atmospheric pre-corrosion fatigue properties of epoxy primer-coated 7075-T6 aluminum alloy structures [J]. Int. J. Fatigue, 2019, 129: 105225
[15] Wysocka J, Cieslik M, Krakowiak S, et al. Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media [J]. Electrochim. Acta, 2018, 289: 175
[16] Wysocka J, Krakowiak S, Ryl J. Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring [J]. Electrochim. Acta, 2017, 258: 1463
[17] Cheng X Y, Ye H, Guo C H, et al. Molecular dynamics simulation of diffusion behavior of benzotriazole and sodium benzoate in volatile corrosion inhibitor film [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1323
[17] (程学雨, 叶 桓, 郭程皓 等. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1323)
[18] Shi C J, Lei R, Deng S D, et al. Corrosion inhibition of Erigeron canadensis L. extract for steel in HCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1189
[18] (石成杰, 雷 然, 邓书端 等. 小蓬草提取物对钢在HCl介质中的缓蚀作用 [J]. 中国腐蚀与防护学报, 2024, 44: 1189)
[19] Liu X H, Li Y Z, Lei L, et al. The effect of nitrate on the corrosion behavior of 7075-T651 aluminum alloy in the acidic NaCl solution [J]. Mater. Corros., 2021, 72: 1478
[20] Zhang W Y, Zhang D Q, Li X H, et al. Excellent performance of dodecyl dimethyl betaine and calcium gluconate as hybrid corrosion inhibitors for Al alloy in alkaline solution [J]. Corros. Sci., 2022, 207: 110556
[21] Liu J, Wang D P, Gao L X, et al. Synergism between cerium nitrate and sodium dodecylbenzenesulfonate on corrosion of AA5052 aluminium alloy in 3wt.%NaCl solution [J]. Appl. Surf. Sci., 2016, 389: 369
[22] Tian W M, Li S M, Wang B, et al. Pitting corrosion of naturally aged AA7075 aluminum alloys with bimodal grain size [J]. Corros. Sci., 2016, 113: 1
[23] Wang S J, Cao Y M, Liu X H, et al. In situ electrochemical monitoring of the crevice corrosion process of the 7075-T651 aluminium alloy in acidic NaCl and NaNO3 solution [J]. Materials, 2023, 16: 2812
[24] Zhang Q H, Hou B S, Zhang G A. Inhibitive and adsorption behavior of thiadiazole derivatives on carbon steel corrosion in CO2-saturated oilfield produced water: Effect of substituent group on efficiency [J]. J. Colloid Interface Sci., 2020, 572: 91
[25] Zhao H X, Zhang X H, Ji L, et al. Quantitative structure-activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design [J]. Corros. Sci., 2014, 83: 261
[1] 陈宇, 魏高飞, 邓书端, 李向红. 碳点缓蚀剂的研究进展及展望[J]. 中国腐蚀与防护学报, 2025, 45(6): 1474-1492.
[2] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[3] 邬春生, 张天永, 李彬, 苑文英, 张霄鸥, 姜爽, 汪怀远. 三嗪季铵盐基高温高压CO2 缓蚀剂及缓蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1639-1648.
[4] 李瓒龙, 颜晴, 满成. 加压载荷和摩擦频率对7075铝合金磨损腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[5] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[6] 王海洋, 林川弘昕, 郭丽雅. 平行磁场下顺磁性镧铁硅基磁热合金的微电偶腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1748-1754.
[7] 夏大海, 潘成成, 郭玉杰, 胡文彬, TRIBOLLET Bernard. EIS研究7050铝合金在NaCl溶液空蚀作用下的界面状态与腐蚀机制[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[8] 蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[9] 谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[10] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[11] 方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[12] 翟亚如, 熊金平, 赵景茂. 3.5%NaCl溶液中硝基巴比妥酸对AZ31BAZ91D镁合金腐蚀的缓蚀作用及机理研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 916-926.
[13] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[14] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[15] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.