Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1741-1747     CSTR: 32134.14.1005.4537.2025.023      DOI: 10.11902/1005.4537.2025.023
  研究报告 本期目录 | 过刊浏览 |
钝化时间对304不锈钢耐蚀性能的影响
黄泽邦1, 刘光明1(), 范文学2, 徐睿中3, 朱炎彬1, 刘晨辉1
1 南昌航空大学 轻量化复合材料江西省重点实验室 南昌 330063
2 安徽鼎旺环保材料科技有限公司 宣城 242000
3 南京航空航天大学能源与动力学院 南京 210016
Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel
HUANG Zebang1, LIU Guangming1(), FAN Wenxue2, XU Ruizhong3, ZHU Yanbin1, LIU Chenhui1
1 Jiangxi Provincial Key Laboratory of Lightweight Composite Materials, Nanchang Hangkong University, Nanchang 330063, China
2 China Anhui Dingwang Environmental Protection Material Technology Co. Ltd. , Xuancheng 242000, China
3 College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
引用本文:

黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
Zebang HUANG, Guangming LIU, Wenxue FAN, Ruizhong XU, Yanbin ZHU, Chenhui LIU. Effect of Passivation Time on Corrosion Resistance of 304 Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1741-1747.

全文: PDF(9098 KB)   HTML
摘要: 

探讨了304不锈钢在硝酸盐和硫酸溶液中钝化时间对其耐蚀性能的影响,采用电化学方法研究耐蚀性能,确定最佳钝化时间,利用表面分析技术对极化后的试样进行腐蚀形貌分析。研究结果表明,钝化时间对304不锈钢的耐蚀性能具有显著影响。随着钝化时间的延长,耐蚀性先增强后减弱,钝化时间为70 min时耐蚀性最好。与钝化70 min相比,90 min时钝化膜的腐蚀电流密度Icorr由7.032 × 10-7升至3.630 × 10-6 A·cm-2,钝化膜电阻Rf由5.514 × 104降至1.024 × 104 Ω·cm2,施主密度ND由2.580 × 1020升至11.47 × 1020 cm-3,耐蚀性能下降。

关键词 304不锈钢钝化时间钝化膜电化学测试耐蚀性    
Abstract

The effect of passivation time of 304 stainless steel in nitrate and sulfuric acid solution on its corrosion resistance was assessed by means of electrochemical methods, in terms of the optimal passivation time, and the corrosion morphology of polarized steel. The results demonstrate that the passivation time has a significant effect on the corrosion resistance of 304 stainless steel. With the increasing passivation time, the corrosion resistance first increases and then decreases, and the corrosion resistance is the best when passivation time is 70 min. In comparison with the 70-minute passivation, the corrosion current density Icorr of the passivated film at 90 min increased from 7.032 × 10-7 to 3.630 × 10-6 A·cm-2, the passivated film resistance Rf decreased from 5.514 × 104 to 1.024 × 104 Ω·cm2, the doners density ND increased from 2.580 × 1020 to 11.47 × 1020 cm-3 and the corrosion resistance decreased.

Key words304 stainless steel    passivation time    passivation film    electrochemical test    corrosion resistance
收稿日期: 2025-01-15      32134.14.1005.4537.2025.023
ZTFLH:  TG178  
基金资助:国家自然科学基金(51961028)
通讯作者: 刘光明,E-mail:gemliu@126.com,研究方向为材料腐蚀与防护
Corresponding author: LIU Guangming, E-mail: gemliu@126.com
作者简介: 黄泽邦,男,1999年生,硕士生
图1  304不锈钢金相组织
图2  电化学腐蚀池示意图
图3  304不锈钢在60 ℃下钝化不同时间后的极化曲线
tminIcorrA·cm-2EcorrVEbVΔEVβAV·dec-1βCV·dec-1
102.531 × 10-6-0.272-0.0980.1744.1905.037
302.348 × 10-6-0.237-0.0470.1904.8085.390
501.091 × 10-6-0.2160.2060.4224.6635.144
707.032 × 10-7-0.2150.3090.5245.0555.585
903.630 × 10-6-0.324-0.1990.1254.7055.624
表1  图3中极化曲线的拟合参数
图4  304不锈钢在60 ℃下钝化不同时间后的电化学阻抗谱
图5  电化学阻抗谱的等效电路
t / minRs / Ω·cm2Y / Ω-1·cm-2·S nnRf / Ω·cm2
102.5485.690 × 10-60.73351.317 × 104
303.2691.031 × 10-50.76371.405 × 104
508.7948.217 × 10-60.72344.401 × 104
704.1473.003 × 10-60.81415.514 × 104
905.4351.574 × 10-50.70291.024 × 104
表2  图4中电化学阻抗谱的拟合参数
图6  304不锈钢在60 ℃下钝化不同时间后的Mott-Schottky曲线
t / minND / cm-3Efb / V (SCE)
107.669 × 1020-0.460
305.751 × 1020-0.445
505.503 × 1020-0.429
702.580 × 1020-0.383
901.147 × 1021-0.471
表3  图6中Mott-Schottky曲线的拟合参数
图7  304不锈钢极化后的腐蚀形貌
图8  304不锈钢极化后的SEM形貌
[1] Bo X T. Development trend of stainless steels [J]. Heat Treat., 2007, 22(4): 5
[1] (薄鑫涛. 不锈钢钢种发展的一些动向 [J]. 热处理, 2007, 22(4): 5)
[2] Nie J W, Gong B K, Wang L, et al. Development of stainless steel passivation [J]. Total Corros. Control, 2020, 34(9): 12
[2] (聂继伟, 宫本奎, 王 磊 等. 不锈钢钝化的发展 [J]. 全面腐蚀控制, 2020, 34(9): 12)
[3] Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002, 415: 770
[4] Olugbade T, Liu C, Lu J. Enhanced passivation layer by Cr diffusion of 301 stainless steel facilitated by SMAT [J]. Adv. Eng. Mater., 2019, 21: 1900125
[5] Yang S L, Li F T, Deng Y, et al. Effect of fluoride ions on corrosion behavior of Incoloy825 alloy in acidic high chloride solution [J]. Welded Pipe Tube, 2023, 46(10): 8
[5] (杨淑莉, 李富天, 邓 毅 等. 酸性高氯介质中氟离子对Incoloy825合金腐蚀行为的影响 [J]. 焊管, 2023, 46(10): 8)
[6] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
[7] Li Y, Liu G M, Li F T, et al. Corrosion behavior of 2507 duplex stainless steel in acidic and high chlorine environments [J]. China Surf. Eng., 2024, 37(2): 91
[7] (李 玉, 刘光明, 李富天 等. 2507双相不锈钢在酸性高氯环境下的腐蚀行为 [J]. 中国表面工程, 2024, 37(2): 91)
[8] Huang X, Zhang J, Yu L, et al. Study on corrosion resistance passivation treatment and material selection of stainless steel [J]. Aviat. Precis. Manuf. Technol., 2022, 58(5): 56
[8] (黄 鑫, 张 娟, 喻 岚 等. 不锈钢耐腐蚀钝化处理及选材 [J]. 航空精密制造技术, 2022, 58(5): 56)
[9] Parsapour A, Khorasani S N, Fathi M H. Corrosion behavior and biocompatibility of hydroxyapatite coating on H2SO4 passivated 316L SS for human body implant [J]. Acta Metall. Sin. (Engl. Lett.), 2013, 26: 409
[10] Dhirendra, Sanyal B. Effect of potassium dichromate on the passivation of stainless steel (AISI 321) in sulphuric acid [J]. Br. Corros. J., 1980, 15: 81
[11] Yi G H, Zheng D J, Song G L. Influence of acid pickling on morphology, optical parameters and corrosion resistance of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 461
[11] (伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 461)
[12] Javidi M, Abadeh H K, Yazdanpanah H R, et al. Synergistic effect of temperature, concentration and solution flow on corrosion and passive film of austenitic SS 304L and 316L in concentrated sulfuric acid [J]. Corros. Sci., 2024, 237: 112306
[13] Gomez-Duran M, Macdonald D D. Stress corrosion cracking of sensitized Type 304 stainless steel in thiosulfate solution: I. Fate of the coupling current [J]. Corros. Sci., 2003, 45: 1455
[14] Wang C, Jiang F, Wang F H. Passivation of 304 stainless steels by nitrate and sulfuric acid solution [J]. Corros. Sci. Prot. Technol., 2003, 15: 334
[14] (王 成, 江 峰, 王福会. 304不锈钢在硝酸盐及硫酸溶液中的钝化 [J]. 腐蚀科学与防护技术, 2003, 15: 334)
[15] Zhang C Y. The effect of nitric passivation on corrosion resistance of ZG06Cr13Ni4Mo low-carbon martensitic stainless steel [D]. Hefei: University of Science and Technology of China, 2020
[15] (张春雨. 硝酸钝化对ZG06Cr13Ni4Mo低碳马氏体不锈钢耐蚀性能的影响 [D]. 合肥: 中国科学技术大学, 2020)
[16] Guo Y J, He C L, Cai Q K, et al. Electrical properties of passive film formed on stainless steel in sulphuric acid [J]. Mater. Prot., 1999, 32(7): 1
[16] (国玉军, 贺春林, 才庆魁 等. 不锈钢在硫酸中形成的钝化膜的导电性能 [J]. 材料保护, 1999, 32(7): 1)
[17] Yue Y Y, Liu C J, Jiang M F. Evolution of passive film on 304 stainless steel during nitric acid passivation [J]. Steel Res. Int., 2022, 93: 2200026
[18] An Y Q, Wang X, Cui Z Y. Effect of nitric acid passivation on critical Cl- concentration for corrosion of 304 stainless steel in simulated concrete pore solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 804
[18] (安易强, 王 昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 804)
[19] He C, Wang X X, Li F T, et al. Electrochemical corrosion behavior of 304 stainless steel in Korla soil leaching solution at different pH values [J]. Electroplat. Finish., 2022, 41: 1595
[19] (何 成, 王欣欣, 李富天 等. 304不锈钢在不同pH的库尔勒土壤浸出液中的腐蚀电化学行为 [J]. 电镀与涂饰, 2022, 41: 1595)
[20] Liu X, Yan B H, Liu Y R. Corrosion behavior of 304 stainless steel in dilute sulfuric acid [J]. Sichuan Metall., 2017, 39(5): 57
[20] (刘 欣, 闫秉昊, 刘友荣. 304不锈钢在稀硫酸溶液中的腐蚀行为探讨 [J]. 四川冶金, 2017, 39(5): 57)
[21] Ye C. Study on the Pitting behavior of 304 stainless steel by electrochemical methods [D]. Nanchang: Nanchang Hangkong University, 2014
[21] (叶 超. 304不锈钢点蚀行为的电化学研究 [D]. 南昌: 南昌航空大学, 2014)
[22] Fan G W, Zhang S L, Qin L Y. Electrochemical impedance spectroscopy of 304 stainless steels during intergranular corrosion [J]. Res. Stud. Foundry Equip., 2007, (3): 12
[22] (范光伟, 张寿禄, 秦丽雁. 304不锈钢晶间腐蚀发展过程的阻抗谱分析 [J]. 铸造设备研究, 2007, (3): 12)
[23] Zhang Y, Zhang X, Chen S Y, et al. Effect of phosphoric acid concentration on corrosion resistance and passivation film properties of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 819
[23] (张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 819)
[24] Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
[25] Li J F, Jia Z Q, Li C X, et al. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater. Corros., 2009, 60: 407
[26] Mohammadi F, Nickchi T, Attar M M, et al. EIS study of potentiostatically formed passive film on 304 stainless steel [J]. Electrochim. Acta, 2011, 56: 8727
[27] Liu S H, Zhu X M, Zhang L, et al. Electronic characteristics of passivation film of Fe24Mn4Al5Cr alloy [J]. J. Dalian Jiaotong Univ., 2021, 42(4): 62
[27] (刘思航, 朱雪梅, 张 琳 等. Fe24Mn4Al5Cr合金钝化膜的电子特性研究 [J]. 大连交通大学学报, 2021, 42(4): 62)
[28] Liang L, Huang Y R. Effect of H2SO4 concentration on the passive film on 00Cr19Mo2NbTi ferrite stainless steel [J]. J. Shenyang Norm. Univ. (Nat. Sci. Ed.), 2020, 38(2): 140
[28] (梁 琳, 黄艳茹. H2SO4浓度对00Cr19Mo2NbTi铁素体不锈钢钝化膜的影响 [J]. 沈阳师范大学学报(自然科学版), 2020, 38(2): 140)
[29] Feng Z C, Cheng X Q, Dong C F, et al. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy [J]. Corros. Sci., 2010, 52: 3646
[30] Zhang H, Du N, Zhou W J, et al. Effect of Fe3+ on pitting corrosion of stainless steel in simulated seawater [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 517
[30] (张 浩, 杜 楠, 周文杰 等. 模拟海水溶液中Fe3+对不锈钢点蚀的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 517)
[1] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[2] 阮智邦, 魏仕轩, 王树鹏, 吕正平, 李格升, 李燚周. 中性氯化钠溶液中咪唑啉磷酸酯对7075铝合金电偶腐蚀抑制行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[3] 何燕, 刘燕, 田华, 陈晔. 低温扩散预处理对含B超级奥氏体不锈钢S31254析出相及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[4] 郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[5] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[6] 李萍, 时慧杰, 裴继斌, 王子健, 曹铁山, 程从前, 赵杰. 纳秒激光辐照对17-4PH不锈钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[7] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[8] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[9] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[10] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[11] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[12] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[13] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[14] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[15] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.