Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1748-1754     CSTR: 32134.14.1005.4537.2025.076      DOI: 10.11902/1005.4537.2025.076
  研究报告 本期目录 | 过刊浏览 |
平行磁场下顺磁性镧铁硅基磁热合金的微电偶腐蚀行为
王海洋1, 林川弘昕1, 郭丽雅1,2()
1 上海大学材料科学与工程学院 上海 200444
2 上海大学(浙江)高端装备基础件材料研究院 嘉兴 314113
Micro-galvanic Corrosion Behavior of Paramagnetic La-Fe-Si Magnetocaloric Alloy Under Parallel Magnetic Fields
WANG Haiyang1, LIN Chuanhongxin1, GUO Liya1,2()
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2 Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314113, China
引用本文:

王海洋, 林川弘昕, 郭丽雅. 平行磁场下顺磁性镧铁硅基磁热合金的微电偶腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(6): 1748-1754.
Haiyang WANG, Chuanhongxin LIN, Liya GUO. Micro-galvanic Corrosion Behavior of Paramagnetic La-Fe-Si Magnetocaloric Alloy Under Parallel Magnetic Fields[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1748-1754.

全文: PDF(5034 KB)   HTML
摘要: 

采用电化学腐蚀和浸泡腐蚀实验,结合扫描电镜等,研究了平行磁场下顺磁性镧铁硅基磁热合金在0.1 mol/L NaClO4溶液中的微电偶腐蚀行为。实验结果表明,施加平行磁场后,La-Fe和La-LaFe13.9Si1.4电偶对的电流密度增大,而LaFe13.9Si1.4-Fe电偶对的电流密度减小。电化学阻抗谱和动电位极化测试表明,平行磁场能降低La-LaFe13.9Si1.4材料的腐蚀速率。浸泡实验结果表明,施加平行磁场后,材料腐蚀程度较低,腐蚀坑小且数量少,无明显腐蚀产物。以上实验结果主要是由于液体中磁流体动力的搅拌作用导致。

关键词 磁热合金平行磁场微电偶腐蚀    
Abstract

The galvanic corrosion behavior of paramagnetic La-Fe-Si-based magnetocaloric alloys in 0.1 mol/L NaClO4 solution under a parallel magnetic field was investigated via static immersion test, scanning electron microscopy and other techniques. The results indicate that the application of a parallel magnetic field increased the corrosion current density of the galvanic couple La-Fe and La-LaFe13.9Si1.4, decreased the corrosion current density of the galvanic couple La-LaFe13.9Si1.4. Electrochemical impedance spectroscopy and potentiodynamic polarization tests demonstrate that the parallel magnetic field can reduce the corrosion rate of La-LaFe13.9Si1.4. Immersion test results show that, compared with the absence of magnetic fields, the corrosion was less severe in the presence of a parallel magnetic field, with smaller and fewer corrosion pits and no obvious corrosion products. The above results were mainly ascribed to the stirring effects for the fluids caused by magnetohydrodynamic forces.

Key wordsmagnetocaloric alloys    parallel magnetic field    micro-galvanic corrosion
收稿日期: 2025-03-05      32134.14.1005.4537.2025.076
ZTFLH:  TG174  
基金资助:国家自然科学基金(52201078);国家自然科学基金(42276214)
通讯作者: 郭丽雅,E-mail:liya_guo@shu.edu.cn,研究方向为金属的腐蚀与防护
Corresponding author: GUO Liya, E-mail: liya_guo@shu.edu.cn
作者简介: 王海洋,男,1999年生,硕士生
图1  三电极电化学实验和零电阻安培计实验工作原理图以及平行磁场方向的定义
图2  LaFe13.9Si1.4、Fe 和 La 的SEM背散射电子像及EDS分析
图3  含La(Fe, Si)13相、α-Fe、富La相的LaFe13.9Si1.4磁热合金的X射线衍射图谱
图4  无磁场和1 T平行磁场下LaFe13.9Si1.4磁热合金在0.1 mol/L NaClO4溶液中的Nyquist图和动电位极化曲线及等效电路
Magnectic fieldRsCPEox × 10-3noxRoxCPEct × 10-3nctRctRPW / Ω-1·cm-2·s0.5χ2 (10-3)
Ω·cm2Ω-1·cm-2·S nΩ·cm2Ω-1·cm-2·S nΩ·cm2Ω·cm2
0 T320.130.71810.240.78251926000.00122.8
1 T30-0.7936-0.9230763112-1.0
表1  LaFe13.9Si1.4磁热合金在0.1 mol/L NaClO4溶液中的电化学阻抗谱拟合数据
图5  无磁场和1 T平行磁场下LaFe13.9Si1.4磁热合金样标定区域在0.1 mol/L NaClO4溶液中浸泡1 h前后的表面形貌
图6  无磁场和1 T平行磁场下不同电偶对在0.1 mol/L NaClO4溶液中浸泡1 h后的ZRA结果
[1] Xue J N. Study on the microstructure and corrosion behavior of La(Fe,Si)13-based magnetocaloric materials [D]. Beijing: University of Science and Technology Beijing, 2020
[1] (薛佳宁. LaFe13- x Si x 基合金的成相及腐蚀行为研究 [D]. 北京: 北京科技大学, 2020)
[2] Sari O, Bali M. From conventional to magnetic refrigerator technology [J]. Int. J. Refrig., 2014, 37: 8
[3] Ouyang Y, Zhang M X, Yan A R, et al. Plastically deformed La-Fe-Si: Microstructural evolution, magnetocaloric effect and anisotropic thermal conductivity [J]. Acta Mater., 2020, 187: 1
[4] Miao L Y, Lu X, Wei Z Y, et al. Enhanced mechanical strength in hot-rolled La-Fe-Si/Fe magnetocaloric composites by microstructure manipulation [J]. Acta Mater., 2023, 245: 118635
[5] Zhong X C, Wu Y C, Li Y X, et al. Transient liquid phase bonding assisted spark plasma sintering of La-Fe-Si magnetocaloric bulk materials [J]. J. Alloy. Compd., 2023, 965: 171419
[6] Hu S B. Study on several galvanic corrosion in simulating deep sea hydrostatic pressure condition [D]. Hefei: University of Science and Technology of China, 2020
[6] (胡胜波. 深海高静水压模拟环境下几种电偶腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2020)
[7] Zhang E Y, Chen Y G, Tang Y B. Investigation on corrosion and galvanic corrosion in LaFe11.6Si1.4 alloy [J]. Mater. Chem. Phys., 2011, 127: 1
[8] Gebert A, Krautz M, Waske A. Exploring corrosion protection of La-Fe-Si magnetocaloric alloys by passivation [J]. Intermetallics, 2016, 75: 88
[9] Hinds G, Rhen F M F, Coey J M D. Magnetic field effects on the rest potential of ferromagnetic electrodes [J]. IEEE Trans. Magn., 2002, 38: 3216
[10] Hinds G, Spada F E, Coey J M D, et al. Magnetic field effects on copper electrolysis [J]. J. Phys. Chem., 2001, 105B: 9487
[11] Leventis N, Dass A. Demonstration of the elusive concentration-gradient paramagnetic force [J]. J. Amer. Chem. Soc., 2005, 127: 4988
[12] Coey J M D, Rhen F M F, Dunne P, et al. The magnetic concentration gradient force—is it real? [J]. J. Solid State Electrochem., 2007, 11: 711
[13] Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron [J]. Electrochim. Acta, 2011, 56: 5866
[14] Li Q B, Su Y Z, Wu W, et al. Effect of self-generated magnetic field on the atmospheric corrosion behavior of copper [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 956
[14] (李秋博, 苏一喆, 吴 伟 等. 自源性磁场对铜大气腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 956)
[15] Lu Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
[16] Lü Z P, Chen J M. Effects of temperature and acid concentration on magnetic-induced hydrogen evolution overpotential of iron in hydrochloric acid solutions [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 303
[16] (吕战鹏, 陈俊明. 温度和酸浓度对铁在盐酸溶液中析氢磁致过电位的影响 [J]. 中国腐蚀与防护学报, 1995, 15: 303)
[17] Lü Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
[17] (吕战鹏, 黄德伦, 杨 武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185)
[18] Ma Y X, Jiang D, Yang Y P, et al. Synthesis of magnetic targeted delivery microcapsules and its anti-corrosion self-healing behavior in epoxy resin coatings [J]. Corros. Commun., 2023, 10: 27
[19] Sueptitz R, Tschulik K, Uhlemann M, et al. Impact of magnetic field gradients on the free corrosion of iron [J]. Electrochim. Acta, 2010, 55: 5200
[20] Guo L Y, Lovell E, Wilson N, et al. The electrochemical behaviour of magnetocaloric alloys La(Fe,Mn,Si)13H x under magnetic field conditions [J]. Chem. Commun., 2019, 55: 3642
[21] Zhu C Y, Miao L Y, Xie J H, et al. Magnetic field effects on the corrosion behavior of magnetocaloric alloys LaFe13.9Si1.4 under paramagnetic states [J]. J. Alloy. Compd., 2023, 968: 171901
[22] Guo L Y, Zhu C Y, Wang H Y, et al. Magnetic field effects on the corrosion behavior of magnetocaloric alloys LaFe13.9Si1.4Hy under ferromagnetic states [J]. J Alloy. Compd., 2025, 1017: 179002
[23] El Boukili A, Tahiri N, Salmani E, et al. Magnetocaloric and cooling properties of the intermetallic compound AlFe2B2 in an AMR cycle system [J]. Intermetallics, 2019, 104: 84
[24] Gao L, Huang J H, Zhang Y D, et al. Development of rare earth based room temperature magnetic refrigerants and progress in magnetic refrigerators [J]. Chin. Rare Earths, 2023, 44(4): 91
[24] (高 磊, 黄焦宏, 张英德 等. 稀土基室温磁工质的开发与磁制冷机的研究进展 [J]. 稀土, 2023, 44(4): 91)
[25] Hu J, Dong Z Q, Shen Y M, et al. Effect of excess lanthanum on corrosion and magnetocaloric property of LaFe11.5Si1.5 compounds [J]. J. Rare Earths, 2019, 37: 1116
[26] Cui M J, Ren S M, Zhao H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating [J]. Chem. Eng. J., 2018, 335: 255
[27] Chen X, Guo D C, Liu F G, et al. Effect of magnetic field on the electrochemical corrosion behavior of X70 pipeline steel [J]. Mater. Prot., 2024, 57(5): 33
[27] (陈 旭, 郭大成, 刘付刚 等. 磁场对X70管线钢电化学腐蚀行为的影响 [J]. 材料保护, 2024, 57(5): 33)
[28] Dong X P, Geng X G, Yang L Y, et al. Study on the efficacy loss of the La0.75Mg0.25Ni3.47Co0.2Al0.03 hydrogen storage alloy electrode [J]. Rare Met. Cement. Carbides, 2011, 39(3): 25
[28] (董小平, 耿晓光, 杨丽颖 等. La0.75Mg0.25Ni3.47Co0.2Al0.03储氢合金电极失效研究 [J]. 稀有金属与硬质合金, 2011, 39(3): 25)
[29] Zhu L Y, Chen J Q, Zhang X X, et al. Research progress of effect of magnetic field on metal corrosion [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1117
[29] (朱立洋, 陈俊全, 张欣欣 等. 磁场对金属腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1117)
[30] Deng Z B, Hu X, Liu Y Y, et al. Effect of magnetic field on corrosion behavior of L360 pipeline steel and welded joints in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 471
[30] (邓志彬, 胡 枭, 刘应彦 等. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 471)
[31] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Kelvin force. a mini-review [J]. Electrochem. Commun., 2014, 42: 42
[32] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: The Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
[33] Jackson J E, Lasseigne-Jackson A N, Olson D L, et al. The effect of magnetic fields on corrosion in pipeline steel [A]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering (OMAE 2007) [C]. San Diego, 2007
[34] Chen S X, Fan D, Zhang S P. Influence of magnetic field on electrochemical corrosion behavior [J]. Mater. Prot., 2015, 48(9): 31
[34] (陈散兴, 樊 栋, 张三平. 磁场对电化学腐蚀行为的影响 [J]. 材料保护, 2015, 48(9): 31)
[35] Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3 + NaCl solution [J]. Electrochim. Acta, 2014, 117: 113
[36] Hu J, Fu S, Huo Y, et al. Effect of impurity phase on corrosion resistance and magnetic entropy change for LaFe11.3Co0.4Si1.3C0.15 magnetocaloric compound [J]. J Rare Earths, 2016, 34: 283
[37] Shinohara K, Hashimoto K, Aogaki R. Shift of the iron corrosion potential and acceleration of the mass transport of dissolved oxygen by the micro-MHD effect [J]. Chem. Lett., 2002, 31: 738
[38] Li T Y, Wei J, Chen N, et al. Corrosion performance of electrochemical sensors for atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 365
[38] (李婷玉, 魏 洁, 陈 楠 等. 用于大气环境的电化学传感器的腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 365)
[1] 谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[2] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[3] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[4] 蒋穹,缪强,丁祥,魏小昕. 片状Al-Zn-Si合金粉的析氢行为与抑制剂研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 61-69.