|
|
水化学对690镍基合金高温高压水腐蚀行为的影响 |
李顺平1,2,3, 党莹2,3, 洪晓峰2,3, 宁方强4( ) |
1 西南交通大学材料科学与工程学院 成都 610031 2 中国核动力研究设计院核反应堆技术全国重点实验室 成都 610213 3 中国核动力研究设计院先进核能技术全国重点实验室 成都 610213 4 山东科技大学材料科学与工程学院 山东省核电特种金属材料重点实验室 青岛 266590 |
|
Effect of Water Chemistry on Corrosion Behavior of Nickel-based Alloy 690 in High Temperature High Pressure Water |
LI Shunping1,2,3, DANG Ying2,3, HONG Xiaofeng2,3, NING Fangqiang4( ) |
1 College of Material Science and Technology, Southwest Jiaotong University, Chengdu 610031, China 2 National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China 3 State Key laboratory of Advanced Nuclear Energy Technology, Nuclear Power Institute of China, Chengdu 610213, China 4 Shandong Key Laboratory of Special Metallic Materials for Nuclear Equipment, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
引用本文:
李顺平, 党莹, 洪晓峰, 宁方强. 水化学对690镍基合金高温高压水腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
Shunping LI,
Ying DANG,
Xiaofeng HONG,
Fangqiang NING.
Effect of Water Chemistry on Corrosion Behavior of Nickel-based Alloy 690 in High Temperature High Pressure Water[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1035-1040.
[1] |
Liao J P, Wu X Q, Tan J B, et al. Fretting corrosion fatigue of alloy 690 in high-temperature pure water [J]. Corros. Sci., 2018, 133: 423
|
[2] |
Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
|
[3] |
Chen J J, Lu Z P, Meng F J, et al. The corrosion behaviour of alloy 690 tube in simulated PWR secondary water with the effect of solid diffusing hydrogen [J]. J. Nucl. Mater., 2019, 517: 179
|
[4] |
Lu B T, Luo J L, Lu Y C. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries [J]. Electrochim. Acta, 2013, 87: 824
|
[5] |
Peng L Y, Wu X Q, Zhang Z Y, et al. Review on relationship between hot functional test water chemistry and corrosion behavior of related component materials in pressurized water reactor nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 529
|
[5] |
(彭立园, 吴欣强, 张兹瑜 等. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 529)
doi: 10.11902/1005.4537.2023.180
|
[6] |
Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
|
[6] |
(刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513)
doi: 10.11902/1005.4537.2021.130
|
[7] |
Kuang W J, Wu X Q, Han E H. Influence of dissolved oxygen concentration on the oxide film formed on alloy 690 in high temperature water [J]. Corros. Sci., 2013, 69: 197
|
[8] |
Wang J Q, Li X H, Huang F, et al. Comparison of corrosion resistance of UNS N06690TT and UNS N08800SN in simulated primary water with various concentrations of dissolved oxygen [J]. Corrosion, 2014, 70: 598
|
[9] |
Montemor M F, Ferreira M G S, Walls M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, alloy 600, and alloy 690 in high-temperature aqueous environments [J]. Corrosion, 2003, 59: 11
|
[10] |
Jeon S H, Lee E H, Hur D H. Effects of dissolved hydrogen on general corrosion behavior and oxide films of alloy 690TT in PWR primary water [J]. J. Nucl. Mater., 2017, 485: 113
|
[11] |
Xu J, Shoji T, Jang C. The effects of dissolved hydrogen on the corrosion behavior of alloy 182 in simulated primary water [J]. Corros. Sci., 2015, 97: 115
|
[12] |
Dong L J, Peng Q J, Zhang Z M, et al. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water [J]. Nucl. Eng. Des., 2015, 295: 403
|
[13] |
Deng P, Peng Q J, Han E H, et al. Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 127: 91
|
[14] |
Machet A, Galtayries A, Marcus P, et al. XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water [J]. Surf. Interface Anal., 2002, 34: 197
|
[15] |
Kuang W J, Wu X Q, Han E H, et al. The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water [J]. Corros. Sci., 2011, 53: 3853
|
[16] |
Ning F Q, Tan J B, Zhang Z Y, et al. Nodular corrosion inside the crevice of alloy 690 in deaerated high-temperature chloride solution [J]. Corros. Sci., 2021, 185: 109442
|
[17] |
Ning F Q, Tan J B, Zhang Z Y, et al. Effects of thiosulfate and dissolved oxygen on crevice corrosion of alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66: 163
doi: 10.1016/j.jmst.2020.05.074
|
[18] |
Beverskog B, Puigdomenech I. Pourbaix diagrams for the ternary system of iron-chromium-nickel [J]. Corrosion, 1999, 55: 1077
|
[19] |
Kim Y J, Andresen P L. Data quality, issues, and guidelines for electrochemical corrosion potential measurement in high-temperature water [J]. Corrosion, 2003, 59: 584
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|