Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 1035-1040     CSTR: 32134.14.1005.4537.2024.414      DOI: 10.11902/1005.4537.2024.414
  研究报告 本期目录 | 过刊浏览 |
水化学对690镍基合金高温高压水腐蚀行为的影响
李顺平1,2,3, 党莹2,3, 洪晓峰2,3, 宁方强4()
1 西南交通大学材料科学与工程学院 成都 610031
2 中国核动力研究设计院核反应堆技术全国重点实验室 成都 610213
3 中国核动力研究设计院先进核能技术全国重点实验室 成都 610213
4 山东科技大学材料科学与工程学院 山东省核电特种金属材料重点实验室 青岛 266590
Effect of Water Chemistry on Corrosion Behavior of Nickel-based Alloy 690 in High Temperature High Pressure Water
LI Shunping1,2,3, DANG Ying2,3, HONG Xiaofeng2,3, NING Fangqiang4()
1 College of Material Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
2 National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China
3 State Key laboratory of Advanced Nuclear Energy Technology, Nuclear Power Institute of China, Chengdu 610213, China
4 Shandong Key Laboratory of Special Metallic Materials for Nuclear Equipment, School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
引用本文:

李顺平, 党莹, 洪晓峰, 宁方强. 水化学对690镍基合金高温高压水腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1035-1040.
Shunping LI, Ying DANG, Xiaofeng HONG, Fangqiang NING. Effect of Water Chemistry on Corrosion Behavior of Nickel-based Alloy 690 in High Temperature High Pressure Water[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1035-1040.

全文: PDF(7160 KB)   HTML
摘要: 

压水堆核电站蒸汽发生器传热管作为连接一回路和二回路的关键设备,其腐蚀行为受不同水化学参数的影响。本工作以传热管材料690镍基合金为研究对象,研究了溶解氧(DO)和溶解氢(DH)对690合金高温高压水腐蚀性能的影响。与在含1 μg/L DO的高温水中相比,690合金在含3 mg/L DO的高温水中,氧化膜中的富Cr氧化物不稳定,易溶于水,从而形成疏松多孔、不具有保护性的NiO层,导致氧化膜增厚;在含3 mg/L DH的高温水中,DH导致氧化膜中的Cr(OH)3增多,Cr2O3减少,进而导致氧化膜保护性降低,氧化膜增厚。

关键词 690合金腐蚀高温高压水溶解氧溶解氢    
Abstract

As the key equipment connecting the primary and secondary circuits of PWR nuclear power plants, the corrosion behavior of heat transfer tubes of steam generator (SG) would be affected by different water chemistry. Herein, the effect of dissolved oxygen (DO) and dissolved hydrogen (DH) on the corrosion performance of Nickel-based alloy 690 used as SG tubes in high temperature pressurized water were studied. In comparison with the formed oxide scale of the alloy formed in the high temperature water containing 1 μg/L DO, in the high temperature water containing 3 mg/L DO, the Cr-rich oxides in the formed oxide scale tend to be unstable and easily soluble in water, thus resulting in a thickened scale of loose, porous and non-protective NiO oxides. Furthermore, in the high temperature water containing 3 mg/L DH, DH leads to an increase of Cr(OH)3 and a decrease of Cr2O3 in the formed oxide scales, as a result, the protectiveness of the oxide scales deteriorated, and the oxide scales grew thicker.

Key wordsnickel-based alloy 690    corrosion    high temperature high pressure water    dissolved oxygen    dissolved hydrogen
收稿日期: 2024-12-27      32134.14.1005.4537.2024.414
ZTFLH:  TL34  
基金资助:国家自然科学基金(52105372);国家重点研发计划(2022YFB4301202-05)
通讯作者: 宁方强,E-mail:fqning16b@alum.imr.ac.cn,研究方向为核电结构材料腐蚀性能研究与评价
Corresponding author: NING Fangqiang, E-mail: fqning16b@alum.imr.ac.cn
作者简介: 李顺平,男,1988年生,博士生,助理研究员
图1  690合金的微观组织
图2  690合金在290 ℃不同水化学参数的高温水中浸泡500 h后氧化膜的SEM形貌
图3  图2a2中位置A和B的能谱分析结果
图4  690合金在290 ℃不同水化学参数的高温水中浸泡500 h后氧化膜的XRD图谱
图5  690合金在290 ℃不同水化学参数的高温水中浸泡500 h后氧化膜的O深度分析
图6  690合金在290 ℃不同水化学参数的高温水中浸泡500 h后氧化膜的Ni、Cr和Fe深度分析
图7  690合金在1 μg/L DO和3 mg/L DH的高温水中浸泡500 h后氧化膜的O 1s和Cr 2p3/2 XPS谱及其分峰结果
图8  Fe-Cr-Ni合金在300 ℃水中的E-pH图[18]
[1] Liao J P, Wu X Q, Tan J B, et al. Fretting corrosion fatigue of alloy 690 in high-temperature pure water [J]. Corros. Sci., 2018, 133: 423
[2] Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
[3] Chen J J, Lu Z P, Meng F J, et al. The corrosion behaviour of alloy 690 tube in simulated PWR secondary water with the effect of solid diffusing hydrogen [J]. J. Nucl. Mater., 2019, 517: 179
[4] Lu B T, Luo J L, Lu Y C. Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries [J]. Electrochim. Acta, 2013, 87: 824
[5] Peng L Y, Wu X Q, Zhang Z Y, et al. Review on relationship between hot functional test water chemistry and corrosion behavior of related component materials in pressurized water reactor nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 529
[5] (彭立园, 吴欣强, 张兹瑜 等. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 529)
doi: 10.11902/1005.4537.2023.180
[6] Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
[6] (刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513)
doi: 10.11902/1005.4537.2021.130
[7] Kuang W J, Wu X Q, Han E H. Influence of dissolved oxygen concentration on the oxide film formed on alloy 690 in high temperature water [J]. Corros. Sci., 2013, 69: 197
[8] Wang J Q, Li X H, Huang F, et al. Comparison of corrosion resistance of UNS N06690TT and UNS N08800SN in simulated primary water with various concentrations of dissolved oxygen [J]. Corrosion, 2014, 70: 598
[9] Montemor M F, Ferreira M G S, Walls M, et al. Influence of pH on properties of oxide films formed on type 316L stainless steel, alloy 600, and alloy 690 in high-temperature aqueous environments [J]. Corrosion, 2003, 59: 11
[10] Jeon S H, Lee E H, Hur D H. Effects of dissolved hydrogen on general corrosion behavior and oxide films of alloy 690TT in PWR primary water [J]. J. Nucl. Mater., 2017, 485: 113
[11] Xu J, Shoji T, Jang C. The effects of dissolved hydrogen on the corrosion behavior of alloy 182 in simulated primary water [J]. Corros. Sci., 2015, 97: 115
[12] Dong L J, Peng Q J, Zhang Z M, et al. Effect of dissolved hydrogen on corrosion of 316NG stainless steel in high temperature water [J]. Nucl. Eng. Des., 2015, 295: 403
[13] Deng P, Peng Q J, Han E H, et al. Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water [J]. Corros. Sci., 2017, 127: 91
[14] Machet A, Galtayries A, Marcus P, et al. XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water [J]. Surf. Interface Anal., 2002, 34: 197
[15] Kuang W J, Wu X Q, Han E H, et al. The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water [J]. Corros. Sci., 2011, 53: 3853
[16] Ning F Q, Tan J B, Zhang Z Y, et al. Nodular corrosion inside the crevice of alloy 690 in deaerated high-temperature chloride solution [J]. Corros. Sci., 2021, 185: 109442
[17] Ning F Q, Tan J B, Zhang Z Y, et al. Effects of thiosulfate and dissolved oxygen on crevice corrosion of alloy 690 in high-temperature chloride solution [J]. J. Mater. Sci. Technol., 2021, 66: 163
doi: 10.1016/j.jmst.2020.05.074
[18] Beverskog B, Puigdomenech I. Pourbaix diagrams for the ternary system of iron-chromium-nickel [J]. Corrosion, 1999, 55: 1077
[19] Kim Y J, Andresen P L. Data quality, issues, and guidelines for electrochemical corrosion potential measurement in high-temperature water [J]. Corrosion, 2003, 59: 584
[1] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[2] 丁智超, 张树国, 肖晓春, 汪迪, 李文杰, 姜丽红. 半固态7075铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
[3] 段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[4] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[5] 冉仁豪, 单慧琳, 张鹏杰, 汪冬梅, 斯佳佳, 徐光青, 吕珺. 表层镁合金化NdFeB磁体的制备及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(4): 1117-1126.
[6] 李茂, 邓轲, 陈衍祥, 刘中豪, 李尚, 郭宇婷, 董选普, 曹华堂. N2 流量和靶基距对多弧离子镀沉积AlSiN纳米复合涂层的微观组织及耐腐蚀性能影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1041-1050.
[7] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[8] 方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[9] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[10] 李秋博, 苏一喆, 吴伟, 张俊喜. 自源性磁场对Cu大气腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[11] 雷涛, 陈绍高, 刘秀利, 范金龙, 郑兴文. 乙二醇冷却液的劣化检测及增材制造AlSi10Mg铝合金在其中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[12] 杨淞普, 黄诗雨, 李刚, 林一, 郭娜, 刘涛, 董丽华. 极地航行船舶用高强钢的磨损腐蚀交互作用机制[J]. 中国腐蚀与防护学报, 2025, 45(4): 894-904.
[13] 高云霞, 何琨, 张瑞谦, 梁雪, 王先平, 方前锋. 氧含量对国产FeCrAl基合金长周期腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[14] 胡娜, 彭文山, 郭为民, 刘天楠, 段体岗, 刘少通. 高强铝合金焊接接头力学-电化学腐蚀行为与退化规律研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 965-974.
[15] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.