Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 407-415     CSTR: 32134.14.1005.4537.2024.262      DOI: 10.11902/1005.4537.2024.262
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
X80掺氢天然气管道的氢脆与腐蚀耦合作用研究
赵杰1,2(), 徐广旭1, 张烘玮1, 李敬法2, 吕冉1, 王嘉龙1, 闫东雷3
1.北京石油化工学院安全工程学院 北京 102627
2.北京石油化工学院 氢能研究中心 北京 102627
3.北京京辉绿氢新能源科技有限公司 北京 102400
Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas
ZHAO Jie1,2(), XU Guangxu1, ZHANG Hongwei1, LI Jingfa2, LV Ran1, WANG Jialong1, YAN Donglei3
1.School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
2.Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102627, China
3.Beijing Jinghui Green Hydrogen New Energy Technology Co., Ltd., Beijing 102400, China
引用本文:

赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
Jie ZHAO, Guangxu XU, Hongwei ZHANG, Jingfa LI, Ran LV, Jialong WANG, Donglei YAN. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 407-415.

全文: PDF(10831 KB)   HTML
摘要: 

采用原位氢渗透与腐蚀电化学测试,探讨了在4 MPa下,不同掺氢比对X80管线钢氢脆与腐蚀特性的影响。通过氢渗透电流、应力应变曲线及断口形貌分析等手段对氢脆行为进行评价,并利用电化学测试和腐蚀形貌分析技术研究X80管线钢的腐蚀规律。结果表明,在天然气掺氢环境中,氢渗透遵循“稳定-上升-下降”的规律,且随着掺氢比的增加,氢渗透电流穿透和到达峰值的时间更短;与未掺氢的试样相比,掺氢试样的力学性能均有所下降。随着掺氢比增加,X80管线钢的腐蚀电流密度增大,阻抗模值减小,腐蚀倾向性增强。基于上述研究,确定了氢脆与腐蚀耦合作用下天然气掺氢输送管线钢的失效机理。

关键词 掺氢天然气X80管线钢原位氢渗透电化学腐蚀    
Abstract

Herein, the effect of different hydrogen doping ratio on the hydrogen embrittlement and corrosion behavior of X80 pipeline steel in 4 MPa hydrogen-doped natural gas was investigated by means of insitu hydrogen permeation measurement and stress-strain curve measurement, as well as electrochemical corrosion methods and corrosion morphology characterization etc. The results indicate that in hydrogen-doped natural gas environment, hydrogen permeation follows a "stable-rise-decline" pattern. As the hydrogen doping ratio increases, the penetration time and the time to reach the peak current of the hydrogen permeation were shortened. The mechanical properties of the hydrogen-charged steels showed a decline compared to the blank ones. Besides, with the increasing hydrogen doping ratios, the corrosion current density of X80 pipeline steel increases, the impedance modulus decreases, and the corrosion tendency intensifies. Based on the above research, a failure mode of hydrogen-doped natural gas transmission pipeline steel under the coupled effect of hydrogen embrittlement and corrosion was established.

Key wordshydrogen-blended natural gas    X80 pipeline steel    in situ hydrogen permeation    electrochemical corrosion
收稿日期: 2024-08-20      32134.14.1005.4537.2024.262
ZTFLH:  TE832  
基金资助:国家重点研发计划(2021YFB4001601)
通讯作者: 赵杰,E-mail:zhaojie@bipt.edu.cn,研究方向为过程装备安全评价技术
Corresponding author: ZHAO Jie, E-mail: zhaojie@bipt.edu.cn
作者简介: 赵 杰,女,1976年生,硕士,教授
图1  实验试样尺寸
图2  原位氢渗透与电化学实验装置
图3  不同掺氢比下X80管线钢的氢渗透电流曲线和氢渗透时间节点
Blended hydrogen ratioJSS / mol·cm-2·s-1Deff / cm2·s-1CH / mol·cm-3
10%1.78 × 10-120.73 × 10-60.24 × 10-6
20%1.98 × 10-120.87 × 10-60.26 × 10-6
40%2.27 × 10-120.99 × 10-60.29 × 10-6
表1  不同掺氢比下X80管线钢的氢渗透相关参数
图4  不同掺氢比下X80管线钢的Nyquist图和Bode图
图5  拟合EIS数据的等效电路图
Blended hydrogen ratioRs / Ω·cm2Ccp / S·s n ·cm-2Rct / Ω·cm2Cdl / S·s n ·cm-1Rcp / Ω·cm2RL / Ω·cm2L / H·cm2
10%87.56.13 × 10-5910.97.76 × 10-5198.1496.84 × 104
20%96.98.14 × 10-5898.92.85 × 10-5126.353.56.37 × 104
40%86.35.23 × 10-5886.23.64 × 10-5117.230.54.31 × 104
表2  不同掺氢比下X80管线钢的电化学阻抗谱拟合数据值
图6  不同掺氢比下X80管线钢的Tafel极化曲线图
Blended hydrogen ratioEcorr / VIcorr / μA·cm-2βa / mV·dec-1βc / mV·dec-1
10%-0.6341.8474.24172.03
20%-0.6363.5177.25182.66
40%-0.6573.3178.16164.67
表3  不同掺氢比下X80管线钢的Tafel极化曲线拟合数据
图7  X80管线钢在10%、20%和40%掺氢比下的腐蚀宏观与微观形貌
图8  X80管线钢在10%、20%和40%掺氢比下的腐蚀三维形貌图
图9  不同掺氢比下X80管线钢的腐蚀产物XRD图谱
图10  不同掺氢比下X80管线钢的应力-应变曲线
Blended hydrogen ratioElongationReduction of area
10%13.8%45.2%
20%14.2%42.8%
40%13.5%41.3%
100%14.6%47.3%
表4  不同掺氢比下X80管线钢的力学性能参数
图11  X80管线钢在掺氢比为0%、10%、20%和40%下的拉伸断口整体与内部形貌
图12  天然气掺氢环境下氢脆与腐蚀耦合作用不同阶段的机理模型示意图
1 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
1 李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
2 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
2 姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
3 Li Y X, Liu C W, Peng H P, et al. Current status and challenges of hydrogen energy transportation methods and technological development [J]. Sci. Technol. Foresinght, 2024, 3(2): 81
3 李玉星, 刘翠伟, 彭浩平 等. 氢能运输方式与技术发展现状及挑战 [J]. 前瞻科技, 2024, 3(2): 81
doi: 10.3981/j.issn.2097-0781.2024.02.008
4 Cai L X, Bai G Q, Gao X F, et al. Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels [J]. Mater. Res. Express, 2022, 9: 046512
5 Zhao Q, Xing Y Y, Wang X Y, et al. Research status of compatibility of hydrogen-blended natural gas pipeline [J]. Mater. Rep., 2024, 38(12): 128
5 赵 茜, 邢云颖, 王修云 等. 天然气管道掺氢输送相容性研究现状 [J]. 材料导报, 2024, 38(12): 128
6 Sun J B, Sun C, Zhang G A, et al. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 31
7 Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
7 刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
8 Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
8 李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J]. 油气储运, 2022, 41: 732
9 Liu F, Yang H W, Deng F J. Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas [J]. Oil Gas Storage Transp., 2024, 43: 289
9 刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X65管线钢的氢脆行为 [J]. 油气储运, 2024, 43: 289
10 Du J W, Ming H L, Wang J Q. Research status and progress of hydrogen embrittlement of hydrogen pipelines [J]. Oil Gas Storage Transp., 2023, 42: 1107
10 杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展 [J]. 油气储运, 2023, 42: 1107
11 Cao S Y. Corrosion law and protective coating of X65 pipeline steel under multi-factor coupling action [D]. Xi'an: Xi'an University of Technology, 2021
11 曹思越. 多因素耦合作用下X65管线钢的腐蚀规律及其防护涂层研究 [D]. 西安: 西安理工大学, 2021
12 Shang J, Chen W F, Zheng J Y, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures [J]. Scr. Mater., 2020, 189: 67
13 Silva S C, Silva A B, Ponciano Gomes J A C. Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment [J]. Eng. Fail. Anal., 2021, 120: 105081
14 Ye B G. Corrosion and hydrogen permeation behavior of X80 pipeline steel in H2S/CO2 environment [D]. Hangzhou: Zhejiang University of Technology, 2019
14 叶保国. X80管线钢在H2S/CO2环境中的腐蚀及氢渗透行为研究 [D]. 杭州: 浙江工业大学, 2019
15 Xu X S, Zhu M Z, Wang C L, et al. Effect of FeCO3 corrosion product scale on hydrogen adsorption and permeation of pipeline steel in gaseous hydrogen-blended natural gas transportation [J]. Corros. Sci., 2024, 229: 111880
16 Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 17671
17 Folena M C, da Cunha Ponciano J A. Assessment of hydrogen embrittlement severity of an API 5LX80 steel in H2S environments by integrated methodologies [J]. Eng. Fail. Anal., 2020, 111: 104380
18 da Silva S C, de Souza E A, Pessu F, et al. Cracking mechanism in API 5L X65 steel in a CO2-saturated environment [J]. Eng. Fail. Anal., 2019, 99: 273
doi: 10.1016/j.engfailanal.2019.02.031
19 Zhao G X, Liu R R, Ding L Y, et al. Effect of temperature on CO2-induced corrosion behavior of 5Cr steel in a simulated oilfield produced high-temperature and high-pressured water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 175
19 赵国仙, 刘冉冉, 丁浪勇 等. 温度对5Cr钢在模拟油田高温高压环境中CO2腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 175
20 Tiegel M C, Martin M L, Lehmberg A K, et al. Crack and blister initiation and growth in purified iron due to hydrogen loading [J]. Acta Mater., 2016, 115: 24
21 Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
22 Gong P, Turk A, Nutter J, et al. Hydrogen embrittlement mechanisms in advanced high strength steel [J]. Acta Mater., 2022, 223: 117488
[1] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[3] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[4] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[5] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[6] 高智悦, 姜波, 樊志彬, 王晓明, 李辛庚, 张振岳. 典型接地材料在碱性土壤模拟液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[7] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[8] 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[9] 王嘉琪, 李莉, 刘婷婷. 工业建筑屋面用铝锰合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[10] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[11] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[12] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[13] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[14] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[15] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.