|
|
X80掺氢天然气管道的氢脆与腐蚀耦合作用研究 |
赵杰1,2( ), 徐广旭1, 张烘玮1, 李敬法2, 吕冉1, 王嘉龙1, 闫东雷3 |
1.北京石油化工学院安全工程学院 北京 102627 2.北京石油化工学院 氢能研究中心 北京 102627 3.北京京辉绿氢新能源科技有限公司 北京 102400 |
|
Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas |
ZHAO Jie1,2( ), XU Guangxu1, ZHANG Hongwei1, LI Jingfa2, LV Ran1, WANG Jialong1, YAN Donglei3 |
1.School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China 2.Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102627, China 3.Beijing Jinghui Green Hydrogen New Energy Technology Co., Ltd., Beijing 102400, China |
引用本文:
赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
Jie ZHAO,
Guangxu XU,
Hongwei ZHANG,
Jingfa LI,
Ran LV,
Jialong WANG,
Donglei YAN.
Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 407-415.
1 |
Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
|
1 |
李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
|
2 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
2 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
3 |
Li Y X, Liu C W, Peng H P, et al. Current status and challenges of hydrogen energy transportation methods and technological development [J]. Sci. Technol. Foresinght, 2024, 3(2): 81
|
3 |
李玉星, 刘翠伟, 彭浩平 等. 氢能运输方式与技术发展现状及挑战 [J]. 前瞻科技, 2024, 3(2): 81
doi: 10.3981/j.issn.2097-0781.2024.02.008
|
4 |
Cai L X, Bai G Q, Gao X F, et al. Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels [J]. Mater. Res. Express, 2022, 9: 046512
|
5 |
Zhao Q, Xing Y Y, Wang X Y, et al. Research status of compatibility of hydrogen-blended natural gas pipeline [J]. Mater. Rep., 2024, 38(12): 128
|
5 |
赵 茜, 邢云颖, 王修云 等. 天然气管道掺氢输送相容性研究现状 [J]. 材料导报, 2024, 38(12): 128
|
6 |
Sun J B, Sun C, Zhang G A, et al. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 31
|
7 |
Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
|
7 |
刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
|
8 |
Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
|
8 |
李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J]. 油气储运, 2022, 41: 732
|
9 |
Liu F, Yang H W, Deng F J. Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas [J]. Oil Gas Storage Transp., 2024, 43: 289
|
9 |
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X65管线钢的氢脆行为 [J]. 油气储运, 2024, 43: 289
|
10 |
Du J W, Ming H L, Wang J Q. Research status and progress of hydrogen embrittlement of hydrogen pipelines [J]. Oil Gas Storage Transp., 2023, 42: 1107
|
10 |
杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展 [J]. 油气储运, 2023, 42: 1107
|
11 |
Cao S Y. Corrosion law and protective coating of X65 pipeline steel under multi-factor coupling action [D]. Xi'an: Xi'an University of Technology, 2021
|
11 |
曹思越. 多因素耦合作用下X65管线钢的腐蚀规律及其防护涂层研究 [D]. 西安: 西安理工大学, 2021
|
12 |
Shang J, Chen W F, Zheng J Y, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures [J]. Scr. Mater., 2020, 189: 67
|
13 |
Silva S C, Silva A B, Ponciano Gomes J A C. Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment [J]. Eng. Fail. Anal., 2021, 120: 105081
|
14 |
Ye B G. Corrosion and hydrogen permeation behavior of X80 pipeline steel in H2S/CO2 environment [D]. Hangzhou: Zhejiang University of Technology, 2019
|
14 |
叶保国. X80管线钢在H2S/CO2环境中的腐蚀及氢渗透行为研究 [D]. 杭州: 浙江工业大学, 2019
|
15 |
Xu X S, Zhu M Z, Wang C L, et al. Effect of FeCO3 corrosion product scale on hydrogen adsorption and permeation of pipeline steel in gaseous hydrogen-blended natural gas transportation [J]. Corros. Sci., 2024, 229: 111880
|
16 |
Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 17671
|
17 |
Folena M C, da Cunha Ponciano J A. Assessment of hydrogen embrittlement severity of an API 5LX80 steel in H2S environments by integrated methodologies [J]. Eng. Fail. Anal., 2020, 111: 104380
|
18 |
da Silva S C, de Souza E A, Pessu F, et al. Cracking mechanism in API 5L X65 steel in a CO2-saturated environment [J]. Eng. Fail. Anal., 2019, 99: 273
doi: 10.1016/j.engfailanal.2019.02.031
|
19 |
Zhao G X, Liu R R, Ding L Y, et al. Effect of temperature on CO2-induced corrosion behavior of 5Cr steel in a simulated oilfield produced high-temperature and high-pressured water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 175
|
19 |
赵国仙, 刘冉冉, 丁浪勇 等. 温度对5Cr钢在模拟油田高温高压环境中CO2腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 175
|
20 |
Tiegel M C, Martin M L, Lehmberg A K, et al. Crack and blister initiation and growth in purified iron due to hydrogen loading [J]. Acta Mater., 2016, 115: 24
|
21 |
Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
|
22 |
Gong P, Turk A, Nutter J, et al. Hydrogen embrittlement mechanisms in advanced high strength steel [J]. Acta Mater., 2022, 223: 117488
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|