Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 416-422     CSTR: 32134.14.1005.4537.2024.079      DOI: 10.11902/1005.4537.2024.079
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
DH36海洋工程钢焊接结构的氢脆敏感性研究
李新城1, 李兆南1, 王海锋1, 徐云泽1,2(), 王明昱1, 甄兴伟1
1.大连理工大学船舶工程学院 大连 116024
2.工业装备结构分析优化与CAE软件全国重点实验室 大连 116024
Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel
LI Xincheng1, LI Zhaonan1, WANG Haifeng1, XU Yunze1,2(), WANG Mingyu1, ZHEN Xingwei1
1.School of Naval Engineering, Dalian University of Technology, Dalian 116024, China
2.National Key Laboratory of Industrial Equipment Structural Analysis and Optimization and CAE Software, Dalian 116024, China
引用本文:

李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
Xincheng LI, Zhaonan LI, Haifeng WANG, Yunze XU, Mingyu WANG, Xingwei ZHEN. Hydrogen Embrittlement Sensitivity for Welded Structural Parts of DH36 Marine Engineering Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 416-422.

全文: PDF(14612 KB)   HTML
摘要: 

以DH36海洋工程钢的焊接构件为研究对象,通过氢渗透和慢应变速率拉伸试验(SSRT)对DH36钢焊接结构不同区域的氢脆敏感性进行对比研究。结果表明,热影响区的氢扩散系数最大,焊缝区次之,母材区最小;热影响区的氢脆系数最高,且热影响区在极化电位为-950 mV时,可以观察到明显的氢脆现象,而母材区与焊缝区当阴极保护电位为-1050 mV时才表现出氢脆特征。热影响区氢脆敏感性高于焊缝区,而焊缝区高于母材区。

关键词 DH36钢氢脆热影响区氢渗透慢应变速率拉伸试验(SSRT)阴极保护    
Abstract

The hydrogen embrittlement sensitivity of different welded structures of DH36 marine engineering steel was comparatively studied via hydrogen diffusion measurement and slow strain rate tests (SSRT). The results show that the hydrogen diffusion coefficient is the highest for the heat-affected zone, followed by the weld zone, and the base metal zone is the lowest. The hydrogen embrittlement coefficient is the highest for the heat-affected zone, and obvious hydrogen embrittlement can be observed in the heat-affected zone by an applied polarization potential of -950 mV, while the base metal and weld zone exhibit hydrogen embrittlement characteristics only when the cathodic protection potential of -1050 mV was applied. The results indicate that the heat-affected zone has higher hydrogen embrittlement sensitivity than the weld zone, however, the weld zone has higher sensitivity than the base metal zone.

Key wordsDH36 steel    hydrogen embrittlement    heat affected zone    hydrogen permeation    slow strain rate tests (SSRT)    cathodic protection
收稿日期: 2024-03-11      32134.14.1005.4537.2024.079
ZTFLH:  TG174  
基金资助:国家自然科学基金(52001055)
通讯作者: 徐云泽,E-mail:xuyunze123@163.com,研究方向为船舶与海洋结构物腐蚀与防护
Corresponding author: XU Yunze, E-mail: xuyunze123@163.com
作者简介: 李新城,男,1999年生,硕士生
图1  母材、热影响区及焊缝区金相图
图2  试样形状及取样区域示意图
图3  拉伸试验装置
图4  电化学充氢装置示意图
图5  焊缝区、热影响区与母材区的氢渗透曲线
ZoneI / mA·cm-2D / cm2·s-1J / mol[H]·cm-2·s-1C0 / mol·cm-3NT
Base metal7.58.33 × 10-67.77 × 10-119.33 × 10-72.69 × 1019
Heat-affected zone10.21.28 × 10-51.06 × 10-108.25 × 10-71.49 × 1019
Welding metal9.11.19 × 10-59.43 × 10-117.92 × 10-71.55 × 1019
表1  焊缝区、热影响区与母材区的氢扩散参数
图6  母材区、焊缝区和热影响区在不同电位下的应力应变曲线及延伸率曲线
图7  母材、热影响区与焊缝区宏观断口形貌图
图8  焊缝区、热影响区和母材区氢脆系数
图9  母材、热影响区和焊缝区在不同电位下拉伸断口形貌图
1 Hao W K, Liu Z Y, Wang X Z, et al. Current situation and prospect of studies on strength and corrosion resistance of high strength steel for ocean platform [J]. Equip. Environ. Eng., 2014, 11(2): 50
1 郝文魁, 刘智勇, 王显宗 等. 海洋平台用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(2): 50
2 Xing S H, Li Y, Ma L, et al. Research progress in cathodic protection technology for marine infrastructures in deep sea environment [J]. Equip. Environ. Eng., 2015, 12(2): 49
2 邢少华, 李 焰, 马 力 等. 深海工程装备阴极保护技术进展 [J]. 装备环境工程, 2015, 12(2): 49
3 Ministry of Industry and Information Technology of the People's Republic of China. Cathodic protection technical specification [S]. Beijing: Chemical Industry Press, 2009
3 中华人民共和国工业和信息化部. 阴极保护技术条件 [S]. 北京: 化学工业出版社, 2009
4 Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 2
4 曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 2
5 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 11
5 褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀—基础部分 [M]. 北京: 科学出版社, 2013: 11
6 Zhang T M, Zhao W M, Li T T, et al. Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation [J]. Corros. Sci., 2018, 131: 104
7 Martínez-Pañeda E, Harris Z D, Fuentes-Alonso S, et al. On the suitability of slow strain rate tensile testing for assessing hydrogen embrittlement susceptibility [J]. Corros. Sci., 2020, 163: 108291
8 Tong H S, Sun Y H, Su Y J, et al. Investigation on hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 130
8 童海生, 孙彦辉, 宿彦京 等. 海工结构用2205双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 130
doi: 10.11902/1005.4537.2017.212
9 Zhang T M, Zhao W M, Guo W, et al. Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315
9 张体明, 赵卫民, 郭 望 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2014, 34: 315
doi: 10.11902/1005.4537.2013.109
10 Jiang X D, Cao R K, Yin P F, et al. Hydrogen embrittlement sensitivity of 10Ni5CrMo steel at different temperatures and polarization potentials [J]. Corros. Prot., 2020, 41(7): 55
10 姜秀丹, 曹荣凯, 尹鹏飞 等. 温度及极化电位对10Ni5CrMo钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2020, 41(7): 55
11 Wang Z, Liu J, Zhang S Q, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 106
11 王 贞, 刘 静, 张施琦 等. 应变速率对预充氢DP780钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 106
12 Wu Y, Zeng Q, Xiao H J, et al. Hydrogen embrittlement behavior of BS960E high strength steel laser-arc hybrid welded joint [J]. Laser Optoelectron. Prog., 2021, 58(21): 2114014
12 吴 颖, 曾 强, 肖辉进 等. BS960E高强钢激光-电弧复合焊接头氢脆行为研究 [J]. 激光与光电子学进展, 2021, 58(21): 2114014
13 Wang W L, Chen Y, Zhan X Q, et al. Comparative study on hydrogen embrittlement susceptibility of X60 and X70 pipeline steels and their welded joints [J]. Surf. Technol., 2024, 53(4): 117
13 王万里, 陈 烨, 占先强 等. X60、X70管线钢及其焊接接头氢脆敏感性的对比研究 [J]. 表面技术, 2024, 53(4): 117
14 Costa L R O, Lemus L F, Dos Santos D S. Hydrogen embrittlement susceptibility of welded 2¼Cr-1Mo steel under elastic stress [J]. Int. J. Hydrog. Energy, 2015, 40: 17128
15 Yan C Y, Zhou Q W, Zhang H, et al. Investigation of hydrogen-induced cracking susceptibility of X90 pipeline steel welded joints [J]. J. Mech. Eng., 2023, 59(24): 83
15 严春妍, 周倩雯, 张 浩 等. X90管线钢焊接接头氢致开裂敏感性研究 [J]. 机械工程学报, 2023, 59(24): 83
16 Świerczyńska A, Fydrych D, Landowski M, et al. Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection [J]. Constr. Build. Mater., 2020, 238: 117697
17 Zhang T M, Zhao W M, Deng Q S, et al. Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen [J]. Int. J. Hydrog. Energy, 2017, 42: 25102
18 Lin Z Q, Ma L, Yan Y G. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of welding line in high strength hull structural steel [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 46
18 林召强, 马 力, 闫永贵. 阴极极化对高强度船体结构钢焊缝氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2011, 31: 46
19 Vecchi L, Pecko D, Mamme M H, et al. Numerical interpretation to differentiate hydrogen trapping effects in iron alloys in the Devanathan-Stachurski permeation cell [J]. Corros. Sci., 2019, 154: 231
20 Guo W, Zhao W M, Zhang T M, et al. Hydrogen permeation behavior of X80 steel under cathodic polarization and stress [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353
20 郭 望, 赵卫民, 张体明 等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 353
21 Wang J, Chen K, Zhao W, et al. Study on microstructure and hydrogen permeation behavior of welding heat affected zone of X80 pipeline steel [J]. Welded Pipe Tube, 2022, 45(3): 1
21 王 佳, 陈 锴, 赵 伟 等. X80管线钢焊接热影响区组织和氢渗透行为研究 [J]. 焊管, 2022, 45(3): 1
22 Liu Y, Li Y, Li Q. Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment [J]. Acta Metall. Sin., 2013, 49: 1089
doi: 10.3724/SP.J.1037.2013.00271
22 刘 玉, 李 焰, 李 强. 阴极极化对管线钢在模拟深海条件下氢脆敏感性的影响 [J]. 金属学报, 2013, 49: 1089
23 Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
24 Nguyen T T, Tak N, Park J, et al. Hydrogen embrittlement susceptibility of X70 pipeline steel weld under a low partial hydrogen environment [J]. Int. J. Hydrog. Energy, 2020, 45: 23739
[1] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] 白云龙, 冷冰, 韦博鑫, 董立谨, 于长坤, 许进, 孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
[4] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[5] 张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
[6] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[7] 崔博伦, 赵杰, 吕冉, 李敬法, 宇波, 闫东雷. 掺氢天然气输送管材氢脆与腐蚀复合防护技术研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[8] 王明洋, 夏大海. 高强铝合金氢脆机理研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[9] 张倩茹, 孙擎擎. 氢促进局部塑性变形理论的发展趋势[J]. 中国腐蚀与防护学报, 2025, 45(2): 271-282.
[10] 万红江, 明洪亮, 王俭秋, 韩恩厚. H2O2CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 371-380.
[11] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[12] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[13] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[14] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[15] 刘国. 关于埋地防腐层管道直流电位梯度(DCVG)测量与%IR计算的讨论[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.