|
|
典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理 |
程凯源1, 彭杨2, 黄峰1( ), 程向龙2, 徐云峰1, 彭志贤1, 刘静1 |
1.武汉科技大学 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081 2.衡钢华菱钢管有限公司 衡阳 421001 |
|
Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism |
CHENG Kaiyuan1, PENG Yang2, HUANG Feng1( ), CHENG Xianglong2, XU Yunfeng1, PENG Zhixian1, LIU Jing1 |
1.Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China 2.Hengsteel Valin Steel pipe Co., Ltd., Hengyang 421001, China |
引用本文:
程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
Kaiyuan CHENG,
Yang PENG,
Feng HUANG,
Xianglong CHENG,
Yunfeng XU,
Zhixian PENG,
Jing LIU.
Adaptability of Typical Seamless Tube Steels to Hydrogen-blended Natural Gas Environments and Hydrogen- induced Damage Mechanism[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 397-406.
1 |
Wang G, Zheng J Y, Jiang L J, et al. The development of hydrogen energy in China [J]. Sci. Technol. Rev., 2017, 35(22): 105
doi: 10.3981/j.issn.1000-7857.2017.22.014
|
1 |
王 赓, 郑津洋, 蒋利军 等. 中国氢能发展的思考 [J]. 科技导报, 2017, 35(22): 105
|
2 |
Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
|
2 |
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
|
3 |
Yi W J, Liang Q, Pei Q B. Enhance the hydrogen application in China's energy system to accelerate the energy transition: status and progress [J]. Environ. Prot., 2018, 46(2): 30
|
3 |
伊文婧, 梁 琦, 裴庆冰. 氢能促进我国能源系统清洁低碳转型的应用及进展 [J]. 环境保护, 2018, 46(2): 30
|
4 |
Yang X H, Zhang G Z. Oil Pipeline Design and Management [M]. Beijing: University of Petroleum Press, 1996
|
4 |
杨筱蘅, 张国忠. 输油管道设计与管理 [M]. 北京: 石油大学出版社, 1996
|
5 |
Jiang Q M, Wang Q, Xie P, et al. Development status and analysis of long-distance hydrogen pipeline at home and abroad [J]. Oil-Gasfield Surf. Eng., 2019, 38(12): 6
|
5 |
蒋庆梅, 王 琴, 谢 萍 等. 国内外氢气长输管道发展现状及分析 [J]. 油气田地面工程, 2019, 38(12): 6
|
6 |
Wang H J, Ming H L, Wang J Q, et al. Effect of small amount of O2 and CO on hydrogen embrittlement susceptibility of X52 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 371
|
6 |
万红江, 明洪亮, 王俭秋 等. H2中O2和CO掺杂对X52管线钢氢脆敏感性影响研究[J]. 中国腐蚀与防护学报, 2025, 45: 371
|
7 |
Godula-Jopek A, Stolten D. Hydrogen Production by Electrolysis [M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2015: 2
|
8 |
Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
|
8 |
程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
|
9 |
Xu Y F, Wang S F, He L, et al. Effect of eco pickled surface treatment on hydrogen embrittlement sensitivity of QStE700TM steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 691
|
9 |
徐云峰, 王少峰, 何 龙 等. EPS处理对QStE700TM钢氢脆敏感性影响 [J]. 中国腐蚀与防护学报, 2024, 44: 691
doi: 10.11902/1005.4537.2023.171
|
10 |
Wang C L, Zhang J X, Liu C W, et al. Study on hydrogen embrittlement susceptibility of X80 steel through in-situ gaseous hydrogen permeation and slow strain rate tensile tests [J]. Int. J. Hydrog. Energy, 2023, 48: 243
|
11 |
Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42: 7404
|
12 |
Nguyen T T, Bae K O, Jaeyeong P, et al. Damage associated with interactions between microstructural characteristics and hydrogen/methane gas mixtures of pipeline steels [J]. Int. J. Hydrog. Energy, 2022, 47: 31499
|
13 |
Hardie D, Charles E A, Lopez A H. Hydrogen embrittlement of high strength pipeline steels [J]. Corros. Sci., 2006, 48: 4378
|
14 |
Nanninga N E, Levy Y S, Drexler E S, et al. 14 Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012; 59: 1
|
15 |
Wang Y F, Gong J M, Jiang W C. A quantitative description on fracture toughness of steels in hydrogen gas [J]. Int. J. Hydrog. Energy, 2013, 38: 12503
|
16 |
Serebrinsky S, Carter E A, Ortiz M. A quantum-mechanically informed continuum model of hydrogen embrittlement [J]. J. Mech. Phys. Solids, 2004, 52: 2403
|
17 |
Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron [J]. Nat. Mater., 2013, 12: 145
doi: 10.1038/nmat3479
pmid: 23142843
|
18 |
Dadfarnia M, Novak P, Ahn C D, et al. Recent advances in the study of structural materials compatibility with hydrogen [J]. Adv. Mater., 2010, 22: 1128
|
19 |
Nagao A, Smith C D, Dadfarnia M, et al. The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel [J]. Acta Mater., 2012, 60: 5182
|
20 |
Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
|
21 |
Robertson I M, Tabata T, Wei W, et al. Hydrogen embrittlement and grain boundary fracture [J]. Scr. Metall., 1984, 18: 841
|
22 |
Nimmagadda P B R, Sofronis P. Creep strength of fiber and particulate composite materials: the effect of interface slip and diffusion [J]. Mech. Mater., 1996, 23: 1
|
23 |
Gao S, Chen M C, Chen S, et al. Yielding behavior and its effect on uniform elongation of fine grained IF steel [J]. Mater. Trans., 2014, 55: 73
|
24 |
Gerberich W W, Oriani R A, Lji M J, et al. The necessity of both plasticity and brittleness in the fracture thresholds of iron [J]. Philos. Mag., 1991, 63A: 363
|
25 |
Nagumo M. Hydrogen related failure of steels-a new aspect [J]. Mater. Sci. Technol., 2004, 20: 940
|
26 |
Nie Y H, Kimura Y, Inoue T, et al. Hydrogen embrittlement of a 1500-MPa tensile strength level steel with an ultrafine elongated grain structure [J]. Metall. Mater. Trans., 2012, 43A: 1670
|
27 |
Wang S, Martin M L, Robertson I M, et al. Effect of hydrogen environment on the separation of Fe grain boundaries [J]. Acta Mater., 2016, 107: 279
|
28 |
Sasaki D, Koyama M, Noguchi H. Factors affecting hydrogen-assisted cracking in a commercial tempered martensitic steel: Mn segregation, MnS, and the stress state around abnormal cracks [J]. Mater. Sci. Eng., 2015, 640A: 72
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|