Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 460-468     CSTR: 32134.14.1005.4537.2024.084      DOI: 10.11902/1005.4537.2024.084
  研究报告 本期目录 | 过刊浏览 |
FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究
许竞翔1, 黄睿阳1, 褚振华1(), 蒋全通2()
1.上海海洋大学工程学院 上海 201306
2.中国科学院海洋研究所海洋环境腐蚀与生物污损重点实验室 青岛 266404
Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution
XU Jingxiang1, HUANG Ruiyang1, CHU Zhenhua1(), JIANG Quantong2()
1.College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China
2.CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China
引用本文:

许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
Jingxiang XU, Ruiyang HUANG, Zhenhua CHU, Quantong JIANG. Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 460-468.

全文: PDF(11226 KB)   HTML
摘要: 

探究海洋环境中硫酸盐还原菌(SRB)对自行设计的FeNiCoCrW0.2Al0.1高熵合金腐蚀作用的影响及其潜在的钝化膜形成机制,并在SRB溶液中对其腐蚀行为进行了系统实验观察,特别关注了钝化膜的形成过程。结果显示,在SRB溶液中,高熵合金的耐腐蚀性能出现降低,这一现象可能与SRB代谢产物的直接作用有关,这些代谢产物促进了生物膜的形成,并削弱了原有的钝化膜,导致合金的耐蚀性受损。基于阴极去极化理论,本研究提出了高熵合金在SRB溶液中钝化膜形成的可能机理,并深入分析了生物膜对合金钝化膜保护效能的影响。

关键词 高熵合金硫酸盐还原菌微生物腐蚀钝化膜生物膜    
Abstract

Marine corrosion has always been a major challenge constraining the effective development and utilization of marine resources, among which microbiologically influenced corrosion (MIC) occupies an extremely important position. As an emerging alloy material, high entropy alloys (HEAs) show significant potential in inhibiting MIC due to their unique high mixed entropy properties. Herein, a HEA FeNiCoCrW0.2Al0.1 was designed and prepared, and then its corrosion behavior in sulfate-reducing bacteria (SRB) containing solutions was assessed with particular attention to the process of passivation film formation. The results showed that the HEA formed a double-layered passivation film in SRB solution, and the main component of the outer layer was Cr2O3, which had strong protective properties. However, the corrosion resistance of the HEA in the SRB solution was reduced compared with that in the sterile medium. This phenomenon may be related to the biological activities of SRB and the direct effect of their metabolites, which promote biofilm formation and weaken the original passivation film, resulting in the impaired corrosion resistance of the alloy. Based on the theory of cathodic depolarization, a mechanism for the passivation film formation of HEAs in SRB solution was proposed, and the influence of biofilm on the protective efficacy of the passivation film on the alloy was further analyzed.

Key wordsHEA    SRB    MIC    passivation film    biofilm
收稿日期: 2024-03-16      32134.14.1005.4537.2024.084
ZTFLH:  TG174  
基金资助:国家自然科学基金(51872072);上海市自然科学基金(20ZR1424000)
通讯作者: 褚振华,E-mail:zhchu@shou.edu.cn,研究方向为海洋材料的腐蚀与防护;
蒋全通,E-mail:jiangquantong@qdio.ac.cn,研究方向为海洋新材料的腐蚀与防护
Corresponding author: CHU Zhenhua, E-mail: zhchu@shou.edu.cn;
JIANG Quantong, E-mail: jiangquantong@qdio.ac.cn
作者简介: 许竞翔,男,1985年生,博士,教授
图1  FeNiCoCrW0.2Al0.1高熵合金微观形貌及XRD分析
图2  FeNiCoCrW0.2Al0.1高熵合金在SRB溶液中浸泡不同天数后的FM形貌
图3  FeNiCoCrW0.2Al0.1高熵合金试样在SRB溶液浸泡9和24 d后的SEM形貌以及去除生物膜和腐蚀产物后的SEM形貌
图4  高熵合金试样在SRB溶液中和无菌培养基溶液中的极化曲线
MediumEcorr / mVIcorr / A·cm-2Epit / mVIpit / A·cm-2Kcorr / mm·a-1
HEA in aseptic medium-2326.30 × 10-711562.77 × 10-57.68 × 10-3
HEA in SRB solution-3268.26 × 10-610644.87 × 10-51.01 × 10-1
304 stainless steel in SRB solution-3611.29 × 10-5--1.33 × 10-1
表1  电化学测试的腐蚀参数和估算腐蚀速率
图5  用于拟合试样在SRB溶液中浸泡后的EIS的等效电路
图6  高熵合金试样在SRB溶液中浸泡9和24 d后的EIS
Time / dRs / Ω·cm2Rpas1 / Ω·cm2Rpas2 / Ω·cm2CPEpas1 / S·s n ·cm-2npas1CPEpas2 / S·s n ·cm-2npas2dpas1 / nmdpas2 / nm
961.37678315038.70 × 10-50.822.11 × 10-40.523.051.26
2454.79133479259.06 × 10-50.611.94 × 10-40.772.931.37
表2  EIS拟合得到的电路元件参数以及估算的钝化膜厚度
图7  高熵合金在SRB溶液中浸泡24 d后表面处合金元素的XPS精细谱及峰拟合结果
图8  高熵合金在SRB溶液中浸泡24 d后距表面4 nm处合金元素的XPS精细谱及峰拟合结果
Oxidation stateOrbitalEnergy peakEnergy peak
(0 nm)(-4 nm)
Fe (Fe3+)2p3/2709.36709.83
Fe (matel)2p3/2-706.88
Cr (Cr(OH)3)2p3/2576.62577.45
Cr (Cr2O3)2p3/2575.39576.07
Cr (matel)2p3/2572.74573.83
Ni (Ni2+)2p3/2854.70-
Ni (matel)2p3/2851.56852.71
Co (Co2+)2p3/2780.18-
Co (matel)2p3/2777.29778.07
W4 (W6+)4f7/234.3535.84
W4 (matel)4f7/229.9931.23
O (H2O)1s532.12-
O (O2-)1s529.29530.39
O (OH-)1s530.74531.51
表3  检测到的7种元素的XPS峰位置及其对应的可能氧化态
图9  高熵合金试样在SRB溶液中浸泡时形成的表面钝化膜的组成元素及其相对分数与对应的氧化态
图10  FeNiCoCrW0.2Al0.1高熵合金在SRB溶液中形成钝化膜的机理示意图
1 Koushik B G, Van den Steen N, Mamme M H, et al. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate [J]. J. Mater. Sci. Technol., 2021, 62: 254
doi: 10.1016/j.jmst.2020.04.061
2 Zhang X M, Chen Z Y, Luo H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: A review [J]. T. Nonferr. Metal. Soc., 2022, 32(2): 377
3 Wang Y. Ultimate strength and mechano-electrochemical investigations of steel marine structures subject to corrosion [D]. University of Southampton, 2015
4 Wang C G, Daniel E F, Li C, et al. Corrosion mechanisms of carbon steel- and stainless steel-bolt fasteners in marine environments. J. Chin. Soc. Corros. Prot., 2023, 43: 737
4 王长罡, DANIEL Enobong Felix, 李 超 等. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究 [J]. 中国腐蚀与防护学报, 2023, 43: 737
doi: 10.11902/1005.4537.2023.151
5 Wei H H, Zheng D D, Chen C, et al. Corrosion resistance of Q690 high strength steel in simulated corrosive environment of ocean splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 186
5 魏欢欢, 郑东东, 陈 晨 等. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 186
doi: 10.11902/1005.4537.2022.042
6 Videla H A. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments [J]. Biofouling, 2000, 15(1-3): 37
doi: 10.1080/08927010009386296 pmid: 22115290
7 Wang Y, Wharton J A, Shenoi R A. Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: A review [J]. Corros. Sci., 2014, 86: 42
8 King R. Study on mechanism of microbiology corrosion [J]. Nature, 1971, 233(5): 491
9 Oguro A, Kakeshita H, Takamatsu H, et al. The effect of Srb, a homologue of the mammalian SRP receptor α-subunit, on Bacillus subtilis growth and protein translocation [J]. Gene, 1996, 172(1): 17
pmid: 8654983
10 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
11 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., A, 2004, 375: 213
12 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
13 Tran B T, Pham h a, Nguyen V T, et al. Outstanding performance of FeNiCoCr-based high entropy alloys: The role of grain orientation and microsegregation [J]. J. Alloy. Compd., 2024, 973: 172860
14 Wang K, Li C P, Lu J L, et al. Cavitation resistance of NiCoCrFe-Nb0.45 eutectic high entropy alloy for hydraulic machinery [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1079
14 王 凯, 李晨沛, 卢金玲 等. NiCoCrFeNb0.45共晶高熵合金在水力机械中的抗空蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1079
15 Diao H, Santodonato L J, Tang Z, et al. Local structures of high-entropy alloys (HEAs) on atomic scales: an overview [J]. Jom., 2015, 67: 2321
16 Lou Y, Dai C, Chang W, et al. Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa [J]. Corros. Sci., 2020, 165: 108390
17 Yang C, Feng H, Chen X, et al. Enhanced pitting corrosion resistance of CoCrFeMnNi high entropy alloy in the presence of Desulfovibrio vulgaris via nitrogen doping [J]. J. Mater. Sci. Technol., 2023, 139: 92
18 Yuan S, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
19 Kalajahi S T, Rasekh B, Yazdian F, et al. Corrosion behaviour of X60 steel in the presence of sulphate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) in seawater [J]. Corros. Eng. Sci. Techn., 2021, 56(6): 543
doi: 10.1080/1478422X.2021.1919840
20 Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
20 万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
21 Varshney P, Mishra R S, Kumar N. Understanding the nature of passivation film formed during corrosion of Fe39Mn20Co20Cr15Si5Al1 high entropy alloy in 3.5wt%NaCl solution [J]. J. Alloy. Compd., 2022, 904: 164100
[1] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[2] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[3] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[4] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[5] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[6] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[7] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[8] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[9] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[10] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[11] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[12] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[13] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[14] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[15] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.