|
|
FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究 |
许竞翔1, 黄睿阳1, 褚振华1( ), 蒋全通2( ) |
1.上海海洋大学工程学院 上海 201306 2.中国科学院海洋研究所海洋环境腐蚀与生物污损重点实验室 青岛 266404 |
|
Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution |
XU Jingxiang1, HUANG Ruiyang1, CHU Zhenhua1( ), JIANG Quantong2( ) |
1.College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China 2.CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China |
引用本文:
许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
Jingxiang XU,
Ruiyang HUANG,
Zhenhua CHU,
Quantong JIANG.
Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 460-468.
1 |
Koushik B G, Van den Steen N, Mamme M H, et al. Review on modelling of corrosion under droplet electrolyte for predicting atmospheric corrosion rate [J]. J. Mater. Sci. Technol., 2021, 62: 254
doi: 10.1016/j.jmst.2020.04.061
|
2 |
Zhang X M, Chen Z Y, Luo H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: A review [J]. T. Nonferr. Metal. Soc., 2022, 32(2): 377
|
3 |
Wang Y. Ultimate strength and mechano-electrochemical investigations of steel marine structures subject to corrosion [D]. University of Southampton, 2015
|
4 |
Wang C G, Daniel E F, Li C, et al. Corrosion mechanisms of carbon steel- and stainless steel-bolt fasteners in marine environments. J. Chin. Soc. Corros. Prot., 2023, 43: 737
|
4 |
王长罡, DANIEL Enobong Felix, 李 超 等. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究 [J]. 中国腐蚀与防护学报, 2023, 43: 737
doi: 10.11902/1005.4537.2023.151
|
5 |
Wei H H, Zheng D D, Chen C, et al. Corrosion resistance of Q690 high strength steel in simulated corrosive environment of ocean splash zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 186
|
5 |
魏欢欢, 郑东东, 陈 晨 等. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 186
doi: 10.11902/1005.4537.2022.042
|
6 |
Videla H A. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments [J]. Biofouling, 2000, 15(1-3): 37
doi: 10.1080/08927010009386296
pmid: 22115290
|
7 |
Wang Y, Wharton J A, Shenoi R A. Ultimate strength analysis of aged steel-plated structures exposed to marine corrosion damage: A review [J]. Corros. Sci., 2014, 86: 42
|
8 |
King R. Study on mechanism of microbiology corrosion [J]. Nature, 1971, 233(5): 491
|
9 |
Oguro A, Kakeshita H, Takamatsu H, et al. The effect of Srb, a homologue of the mammalian SRP receptor α-subunit, on Bacillus subtilis growth and protein translocation [J]. Gene, 1996, 172(1): 17
pmid: 8654983
|
10 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
11 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., A, 2004, 375: 213
|
12 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
|
13 |
Tran B T, Pham h a, Nguyen V T, et al. Outstanding performance of FeNiCoCr-based high entropy alloys: The role of grain orientation and microsegregation [J]. J. Alloy. Compd., 2024, 973: 172860
|
14 |
Wang K, Li C P, Lu J L, et al. Cavitation resistance of NiCoCrFe-Nb0.45 eutectic high entropy alloy for hydraulic machinery [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1079
|
14 |
王 凯, 李晨沛, 卢金玲 等. NiCoCrFeNb0.45共晶高熵合金在水力机械中的抗空蚀性能研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1079
|
15 |
Diao H, Santodonato L J, Tang Z, et al. Local structures of high-entropy alloys (HEAs) on atomic scales: an overview [J]. Jom., 2015, 67: 2321
|
16 |
Lou Y, Dai C, Chang W, et al. Microbiologically influenced corrosion of FeCoCrNiMo0.1 high-entropy alloys by marine Pseudomonas aeruginosa [J]. Corros. Sci., 2020, 165: 108390
|
17 |
Yang C, Feng H, Chen X, et al. Enhanced pitting corrosion resistance of CoCrFeMnNi high entropy alloy in the presence of Desulfovibrio vulgaris via nitrogen doping [J]. J. Mater. Sci. Technol., 2023, 139: 92
|
18 |
Yuan S, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
|
19 |
Kalajahi S T, Rasekh B, Yazdian F, et al. Corrosion behaviour of X60 steel in the presence of sulphate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) in seawater [J]. Corros. Eng. Sci. Techn., 2021, 56(6): 543
doi: 10.1080/1478422X.2021.1919840
|
20 |
Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
|
20 |
万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
|
21 |
Varshney P, Mishra R S, Kumar N. Understanding the nature of passivation film formed during corrosion of Fe39Mn20Co20Cr15Si5Al1 high entropy alloy in 3.5wt%NaCl solution [J]. J. Alloy. Compd., 2022, 904: 164100
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|