Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 469-478     CSTR: 32134.14.1005.4537.2024.338      DOI: 10.11902/1005.4537.2024.338
  研究报告 本期目录 | 过刊浏览 |
6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为
杨震宇1,2, 基超1,2, 郭丽雅1,2(), 徐闰1,2, 彭伟1,2, 赵洪山1,2, 韦习成1,2, 董瀚1,2
1.上海大学材料科学与工程学院 上海 200444
2.上海大学(浙江)高端装备基础件材料研究院 嘉兴 314113
Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution
YANG Zhenyu1,2, JI Chao1,2, GUO Liya1,2(), XU Run1,2, PENG Wei1,2, ZHAO Hongshan1,2, WEI Xicheng1,2, DONG Han1,2
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314113, China
引用本文:

杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
Zhenyu YANG, Chao JI, Liya GUO, Run XU, Wei PENG, Hongshan ZHAO, Xicheng WEI, Han DONG. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 469-478.

全文: PDF(14445 KB)   HTML
摘要: 

采用电化学和浸泡腐蚀实验,结合扫描电镜、3D光学轮廓仪和显微Raman光谱仪等研究了纯铁3N2、4N2、5N2以及普碳钢Q235B、耐候钢SPA-H、不锈钢304L在3.5%NaCl溶液中的初期腐蚀行为。电化学阻抗谱结果表明样品的腐蚀速率为:304L < 5N2 < 4N2 < 3N2 < SPA-H < Q235B。扫描电镜和3D轮廓仪揭示了纯铁3N2、4N2和5N2发生了局部腐蚀,其中3N2蚀坑最深。各样品表面腐蚀产物的主要成分为Fe3O4γ-FeOOH和α-FeOOH。

关键词 纯铁电化学蚀坑腐蚀产物    
Abstract

The initial corrosion behavior of three pure irons of different purity 3N2, 4N2 and 5N2, carbon steel Q235B, weathering steel SPA-H and stainless steel 304L in 3.5%NaCl solution was comparatively investigated by means of immersion test, electrochemical measurements, scanning electron microscopy, 3D profiling microscope and laser confocal Raman microscope. Results showed that according to the electrochemical impedance value, the corrosion rate of the six test materials from low to high is as following: 304L < 5N2 < 4N2 < 3N2 < SPA-H < Q235B. The scanning electron microscopy observation and 3D profiling microscope measurement revealed that the three pure irons 3N2, 4N2 and 5N2 exhibited localized corrosion; while the 3N2 presented the deepest corrosion pits. The corrosion products mainly consisted of Fe3O4, γ-FeOOH and α-FeOOH for all the six test materials.

Key wordspure iron    electrochemistry    corrosion pits    corrosion products
收稿日期: 2024-10-14      32134.14.1005.4537.2024.338
ZTFLH:  TG174  
基金资助:国家自然科学基金(42276214);国家自然科学基金(52201078);上海市青年科技英才扬帆计划(21YF1412800)
通讯作者: 郭丽雅,E-mail:liya_guo@shu.edu.cn,研究方向为钢的腐蚀与防护
Corresponding author: GUO Liya, E-mail: liya_guo@shu.edu.cn
作者简介: 杨震宇,男,2000年生,硕士生
MaterialsCSiMnPSCuCrNiFe
Q235B steel0.150.190.280.0180.0070.030.040.01Bal.
SPA-H steel0.090.040.450.0730.0140.280.360.01Bal.
304L stainless steel0.020.391.060.0350.002-18.398.01Bal.
表1  材料的化学成分 (mass fraction / %)
图1  Q235B、SPA-H、304L以及3N2、4N2和5N2的显微组织
Materials(Mn, Ca, Mg) x S y(Al, Ca, Mg, Si) x O y(Mn, Ca, Mg) x S y -(Al, Ca, Mg, Si) z O w
Q235B steel2602343
SPA-H steel344128132
304L stainless steel41356
3N2 pure iron-12-
4N2 pure iron---
5N2 pure iron---
表2  样品中夹杂物数量
图2  6种材料在3.5%NaCl溶液中浸泡1 h后表面XPS分析
图3  全浸实验样品表面形成的钝化膜或氧化膜中Fe 2p各组分占比及Fe2+和Fe3+比
图4  6种材料在3.5%NaCl溶液浸泡1 h后的开路电位图
图5  6种实验材料在3.5%NaCl溶液浸泡1 h的EIS及等效电路图
MaterialsRs / Ω·cm2CPEox × 10-4 / Ω-1·cm-2·S nnRox / Ω·cm2CPEdl × 10-4 / Ω-1·cm-2·S nnRct / Ω·cm2RP / Ω·cm2
Q235B steel8.514.50.7446.70.90.85408.7455.4
SPA-H steel9.616.40.7015.64.50.71511.6527.5
3N2 pure iron4.853.60.81430.775.20.70251.4682.1
4N2 pure iron5.211.10.76770.1229.50.91170.7940.8
5N2 pure iron4.87.20.82882.5291.00.92270.81153.3
304L stainless steel11.60.60.997800.00.10.94229600.0237400.0
表3  6种实验材料在3.5%NaCl溶液浸泡1 h后的EIS拟合数据
图6  6种实验材料在3.5%NaCl溶液中浸泡1 h后的动电位极化曲线
MaterialsEcorr / VIcorr / μA·cm-2
Q235B steel-0.708.84
SPA-H steel-0.636.14
3N2 pure iron-0.5721.34
4N2 pure iron-0.4214.18
5N2 pure iron-0.558.34
304L stainless steel-0.120.05
表4  浸泡于3.5%NaCl溶液1 h后样品的自腐蚀电位和腐蚀电流密度
图7  6种实验材料在3.5%NaCl溶液中浸泡1 h并除锈后的SEM图和3D轮廓仪图
MaterialsMax pit depth / μmAverage pit depth / μmAverage pit width / μmNumber of pits
Q235B steel29.87.4 ± 6.182.7 ± 43.543
SPA-H steel19.17.3 ± 3.411.2 ± 8.598
304L stainless steel8.13.4 ± 1.56.2 ± 3.230
3N2 pure iron26.18.3 ± 5.657.4 ± 20.464
4N2 pure iron22.54.9 ± 2.632.5 ± 18.467
5N2 pure iron20.45.6 ± 2.618.5 ± 14.548
表5  浸泡于3.5%NaCl溶液中1 h后样品的腐蚀坑特征
图8  除304L外其它5种实验材料在3.5%NaCl溶液中浸泡1 h后的拉曼光谱
1 Ai Z Y, Sun W, Jiang J Y. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems [J]. Corros. Sci. Prot. Technol., 2015, 27: 525
1 艾志勇, 孙 伟, 蒋金洋. 低合金耐蚀钢筋锈蚀研究现状及存在的问题分析 [J]. 腐蚀科学与防护技术, 2015, 27: 525
doi: 10.11903/1002.6495.2014.407
2 Huang J Z, Huang T, Yang L J, et al. Electrochemical properties and offshore corrosion behavior of SAF 2304 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 630
2 黄家针, 黄 涛, 杨丽景 等. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 630
doi: 10.11902/1005.4537.2022.217
3 Yu P P, Zhou X J, Mukhtar A, et al. Research status and prospect of high purity iron preparation [J]. China Metall., 2023, 33(6): 9
3 于盼盼, 周雪娇, Mukhtar A 等. 高纯铁制备的研究现状及展望 [J]. 中国冶金, 2023, 33(6): 9
4 Khan L, Sato K, Okuyama S, et al. Ultra-high-purity iron is a novel and very compatible biomaterial [J]. J. Mech. Behav. Biomed. Mater., 2020, 106: 103744
5 Yu Y C, Kang J, Feng L, et al. Pitting corrosion behavior and corrosion resistance of high strength seismic reinforcement rebar with trace rare earth [J]. J. Chin. Soc. Rare Earths, 2022, 40: 853
5 于彦冲, 康 健, 奉 亮 等. 稀土微合金化高强抗震钢筋点蚀行为及耐蚀性能研究 [J]. 中国稀土学报, 2022, 40: 853
6 Zhao Q C, Wang X F, Pan Z M, et al. Effects of rare earth elements addition on mechanical properties and corrosion behavior of GCr15 bearing steel under different heat treatment conditions [J]. Corros. Commun., 2023, 9: 65
7 Liu L H, Qi H B, Lu Y P, et al. A review on weathering steel research [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 86
7 刘丽宏, 齐慧滨, 卢燕平 等. 耐大气腐蚀钢的研究概况 [J]. 腐蚀科学与防护技术, 2003, 15(2): 86
8 Xiao K, Dong C F, Li X G, et al. Study on accelerated corrosion tests for carbon steels and weathering steels [J]. Equip. Environ. Eng., 2007, 4(3): 5
8 肖 葵, 董超芳, 李晓刚 等. 碳钢和耐候钢加速腐蚀实验研究 [J]. 装备环境工程, 2007, 4(3): 5
9 Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
10 Wang J J, Chen R N, Hu H C, et al. Effect of Al on microstructure and weathering resistance of 4Cr1.5Ni weathering steel [J]. Iron Steel, 2023, 58(2): 126
10 王进建, 陈润农, 胡惠超 等. 铝对4Cr1.5Ni耐候钢组织和耐候性的影响 [J]. 钢铁, 2023, 58(2): 126
doi: 10.13228/j.boyuan.issn0449-749x.20220475
11 Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
11 周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7
12 Zhang X, Liu K, Zhu J, et al. Corrosion behaviors of weathering steel and carbon steel in vertical direction [J]. China Metall., 2023, 33(1): 81
12 张 旭, 刘 锟, 朱 嘉 等. 耐候钢和碳钢在竖直方向上的腐蚀行为 [J]. 中国冶金, 2023, 33(1): 81
13 Liu G Q, Zhang D F, Chen H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204
13 刘国强, 张东方, 陈昊翔 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 204
14 Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
14 王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237
15 Yang D H, Song Q C. Study on microstructure and mechanical properties of S355J2W weather resistance steel annealing with different processes [J]. Hot Work. Technol., 2013, 42(12): 235
15 杨德惠, 宋全超. S355J2W耐候钢不同退火工艺下的组织性能研究 [J]. 热加工工艺, 2013, 42(12): 235
16 Abiko K. Why do we study ultra-high purity base metals? [J]. Mater. Trans. JIM, 2000, 41: 233
17 Feng M R, Qiu J Z, Zhou X M, et al. Influence of flow on the corrosion behavior of pure iron in simulated geological repository conditions [J]. Surf. Interfaces, 2024, 46: 103998
18 Xu W C, Street S R, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions: II. on the effect of carbon [J]. J. Electrochem. Soc., 2015, 162: C243
19 Xu W C, Street S R, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions: I. On the structures of salt layers [J]. J. Electrochem. Soc., 2015, 162: C238
20 Xu W C, Yu F, Liu M. Influence of solid corrosion products in corrosion pits on growth of corrosion pits [J]. Mater. Prot., 2017, 50(11): 5
20 徐玮辰, 于 菲, 刘 敏. 钢铁点蚀坑内腐蚀产物对点蚀扩展的影响 [J]. 材料保护, 2017, 50(11): 5
21 Peng W, Gao X Q, Fan Z W, et al. Characteristics and high purification development of pure iron [J]. Iron Steel, 2021, 56(12): 109
21 彭 伟, 高新强, 范增为 等. 纯铁的特征及高纯化发展 [J]. 钢铁, 2021, 56(12): 109
22 Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
23 Lei X W, Wang H Y, Wang N, et al. Passivity of martensitic stainless steel in borate buffer solution: Influence of sulfide ion [J]. Appl. Surf. Sci., 2019, 478: 255
24 Bolli E, Fava A, Ferro P, et al. Cr segregation and impact fracture in a martensitic stainless steel [J]. Coatings, 2020, 10: 843
25 Shi J J, Ming J, Wang D Q, et al. Improved corrosion resistance of a new 6%Cr steel in simulated concrete pore solution contaminated by chlorides [J]. Corros. Sci., 2020, 174: 108851
26 Li G, Evitts R, Boulfiza M. On the corrosion parameters acquired through potentiodynamic scans of carbon steel rebar in simulated pore solution and mortar [J]. Constr. Build. Mater., 2023, 409: 134160
27 Tang Y H, Li B, Ji P F, et al. Benefit of the rust layer formed on AlMn lightweight weathering steel in industrial atmosphere [J]. Constr. Build. Mater., 2023, 394: 132308
28 Chamritski I, Burns G. Infrared- and raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J]. J. Phys. Chem., 2005, 109B: 4965
29 Wang P X, Wang P J, Li Q, et al. Study of rust layer evolution in Q345 weathering steel utilizing electric resistance probes [J]. Corros. Sci., 2023, 225: 111595
30 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
31 Mi T W, Wang J J, McCague C, et al. Application of Raman Spectroscopy in the study of the corrosion of steel reinforcement in concrete: a critical review [J]. Cem. Concr. Compos., 2023, 143: 105231
32 Han J B, Young D, Colijn H, et al. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments [J]. Ind. Eng. Chem. Res., 2009, 48: 6296
33 Zhang Y, Zhang X, Chen S Y, et al. Corrosion behavior and passive film properties of nickel-based alloy in phosphoric acid [J]. Corros. Commun., 2023, 9: 77
34 Hayden S C, Chisholm C, Grudt R O, et al. Localized corrosion of low-carbon steel at the nanoscale [J]. npj Mater. Degrad., 2019, 3: 17
35 Han Y L, Li J, Guo L Y, et al. Localized corrosion behavior induced by MnS inclusions in HRB400E rebar steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1255
35 韩宇龙, 李 健, 郭丽雅 等. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1255
doi: 10.11902/1005.4537.2023.337
36 Sun Y T, Tan X, Lan R L, et al. Mechanisms of inclusion-induced pitting of stainless steels: a review [J]. J. Mater. Sci. Technol., 2024, 168: 143
37 Hu J Z, Ren Y, Zhang J, et al. Review on pitting corrosion of steel induced by MnS inclusions [J]. China Metall., 2022, 32(11): 18
37 胡锦榛, 任 英, 张 继 等. MnS夹杂物诱发钢材点蚀综述 [J]. 中国冶金, 2022, 32(11): 18
38 Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J]. Corros. Sci., 2012, 58: 159
39 Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
40 Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
41 Li S X, Hihara L H. The comparison of the corrosion of ultrapure iron and low-carbon steel under NaCl-electrolyte droplets [J]. Corros. Sci., 2016, 108: 200
42 Miyake K, Ohashi K, Komuro M. Ultrapure iron film formation by mass-separated ion beam deposition method [J]. MRS Online Proc. Library, 1992, 279: 787
43 Kiyoshi Miyake K M, Kenya Ohashi K O. Superior corrosion resistance of ion beam deposited iron film [J]. Jpn. J. Appl. Phys., 1993, 32: L120
44 Zhang T Y, Hao L J, Jiang Z H, et al. Investigation of rare earth (RE) on improving the corrosion resistance of Zr-Ti deoxidized low alloy steel in the simulated tropic marine atmospheric environment [J]. Corros. Sci., 2023, 221: 111335
45 Chen R N, Li Z D, Cao Y G, et al. Initial corrosion behavior and local corrosion origin of 9%Cr alloy steel in Cl- containing environment [J]. Acta Metall. Sin., 2023, 59: 926
45 陈润农, 李昭东, 曹燕光 等. 9%Cr合金钢在含Cl-环境中的初期腐蚀行为及局部腐蚀起源 [J]. 金属学报, 2023, 59: 926
doi: 10.11900/0412.1961.2021.00597
[1] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] 靳振廷, 宋亓宁, 刘琪, 彭春兰, 许楠, 陆其清, 包晔峰, 赵立娟, 赵建华. 铜合金在不同pH3.5%NaCl溶液中的浸泡腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[4] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[5] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[6] 禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[7] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[8] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[9] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[10] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[11] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[12] 徐桂芝, 杜小泽, 胡晓, 宋洁. Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
[13] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[14] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[15] 冯少宇, 周兆辉, 杨兰兰, 乔岩欣, 王金龙, 王福会. 海洋环境下TC4合金的电化学及磨损行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.