|
|
退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响 |
张慧云1( ), 郑留伟2, 梁伟2 |
1.山西工程职业学院冶金工程系 太原 030009 2.太原理工大学材料科学与工程学院 太原 030024 |
|
Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel |
ZHANG Huiyun1( ), ZHENG Liuwei2, LIANG Wei2 |
1.Department of Mecharical Marfacturing Engineering, Shanxi Engineering Vocational College, Taiyuan 030009, China 2.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
Huiyun ZHANG,
Liuwei ZHENG,
Wei LIANG.
Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 438-448.
1 |
Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
|
2 |
Pinson M, Springer H, Depover T, et al. Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe-C steels [J]. Mater. Sci. Eng., 2020, 792A: 139754
|
3 |
Fan Y H. Effect of microstructures on the hydrogen embrittlement of stainless steels [D]. Shenyang: University of Science and Technology of China, 2019
|
3 |
范宇恒. 不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019
|
4 |
Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
|
5 |
Wu X P. Effect of plastic deformation and annealing treatment on hydrogen embrittlement susceptibility of 304 austenitic stainless steel [D]. Xuzhou: China University of Mining and Technology, 2020
|
5 |
吴玄培. 塑性变形及退火处理对304奥氏体不锈钢氢脆敏感性影响研究 [D]. 徐州: 中国矿业大学, 2020
|
6 |
Zhang H Y, Zheng L W, Meng X M, et al. Effect of cold deformation on microstructure and hydrogen embrittlement sensitivity of 304 austenitic stainless steel [J]. Hot Work. Technol., 2021, 50(9): 61
|
6 |
张慧云, 郑留伟, 孟宪明 等. 冷变形对304奥氏体不锈钢组织及氢脆敏感性的影响 [J]. 热加工工艺, 2021, 50(9): 61
|
7 |
Zhao X L. Study of the susceptibility to hydrogen embrittlement of medium-Mn steel [D]. Beijing: Beijing Iron and Steel Research Institute, 2019
|
7 |
赵晓丽. 高强塑积中锰钢氢脆敏感性的研究 [D]. 北京: 北京钢铁研究总院, 2019
|
8 |
Jiang W, Gong J M, Wang Y F, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging [J]. Mater. Mech. Eng., 2012, 36(2): 28
|
8 |
蒋 旺, 巩建鸣, 王艳飞 等. 电化学充氢前后304L 奥氏体不锈钢的塑性对比 [J]. 机械工程材料, 2012, 36(2): 28
|
9 |
Jiang Y, Gong J M, Zhou R R, et al. Effect of hydrogen on mechanical properties of 304L austenitic stainless steel [J]. Mater. Mech. Eng., 2009, 33(11): 15
|
9 |
姜 勇, 巩建鸣, 周荣荣 等. 氢对304L 奥氏体不锈钢力学性能的影响 [J]. 机械工程材料, 2009, 33(11): 15
|
10 |
Sun G S, Du L X, Hu J, et al. Low temperature superplastic-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel [J]. Mater. Des., 2017, 117: 223
|
11 |
Fan Y H, Zhang B, Wang J Q, et al. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 2213
doi: 10.1016/j.jmst.2019.03.043
|
12 |
Zhang M, Sun G S, Qin D Y, et al. Behavior of martensite reverse transformation and austenite recrystallization of cold-rolled 304 stainless steel [J]. Heat Treat. Met., 2021, 46(7): 51
doi: 10.13251/j.issn.0254-6051.2021.07.010
|
12 |
张 梅, 孙国胜, 秦岽烊 等. 冷轧304不锈钢的马氏体逆相变及奥氏体再结晶行为 [J]. 金属热处理, 2021, 46(7): 51
|
13 |
Sun Q Q, Han J H, Li J X, et al. Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering [J]. Corros. Commun., 2022, 6: 48
|
14 |
Zhang H Y, Zheng L W, Meng X M, et al. Effect of electrochemical hydrogen charging on hydrogen embrittlement sensitivity of Cr15 ferritic and 304 austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 202
|
14 |
张慧云, 郑留伟, 孟宪明 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 202
doi: 10.11902/1005.4537.2020.099
|
15 |
Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, 658A: 400
|
16 |
Jedrychowski M, Tarasiuk J, Bacroix B, et al. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium. A new approach in grain boundary analysis [J]. J. Appl. Crystallogr., 2013, 46: 483
|
17 |
Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel [J]. Mater. Sci. Eng., 2016, 651A: 935
|
18 |
Park C, Kang N, Liu S. Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing [J]. Corros. Sci., 2017, 128: 33
|
19 |
Procter R P M. Hydrogen degradation of ferrous alloys [J]. Br. Corros. J., 1986, 21: 79
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|