Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 438-448     CSTR: 32134.14.1005.4537.2024.078      DOI: 10.11902/1005.4537.2024.078
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响
张慧云1(), 郑留伟2, 梁伟2
1.山西工程职业学院冶金工程系 太原 030009
2.太原理工大学材料科学与工程学院 太原 030024
Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel
ZHANG Huiyun1(), ZHENG Liuwei2, LIANG Wei2
1.Department of Mecharical Marfacturing Engineering, Shanxi Engineering Vocational College, Taiyuan 030009, China
2.School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

张慧云, 郑留伟, 梁伟. 退火工艺对304奥氏体不锈钢的组织演变及氢脆行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 438-448.
Huiyun ZHANG, Liuwei ZHENG, Wei LIANG. Effect of Annealing Process on Microstructure Evolution and Hydrogen Embrittlement Behavior of 304 Austenitic Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 438-448.

全文: PDF(26073 KB)   HTML
摘要: 

研究了不同退火工艺对冷轧态304奥氏体不锈钢组织演变及氢脆敏感性的影响。结果表明:在马氏体逆相变阶段,马氏体作为氢的快速扩散通道含量不断减少,氢含量降低,实验钢氢脆敏感性降低;在回复、再结晶阶段,位错密度降低,出现细小等轴晶粒,氢含量降低,实验钢氢脆敏感性降低;在晶粒长大阶段,平均单位面积晶界上氢含量增多,实验钢氢脆敏感性增加。在整个退火阶段,处于回复阶段的材料性能较优。

关键词 奥氏体不锈钢退火马氏体逆相变回复再结晶氢脆敏感性    
Abstract

The effect of different annealing processes on microstructure evolution and hydrogen embrittlement sensitivity of 304 austenitic stainless steel was studied. The results show that after being subjected to annealing within the reverse phase of martensite transformation, the content of martensite as a rapid diffusion channel of hydrogen decreases continuously, correspondingly, the hydrogen content decreases, as a result, the hydrogen embrittlement sensitivity of the steel decreases. After annealing within the recovery and recrystallization stage, the dislocation density decreases, the fine equiaxed grains appear, the hydrogen content decreases, and thus the hydrogen embrittlement sensitivity of the steel also decreases. However, after annealing within the grain growth stage, the hydrogen content per unit area of grain boundaries increases, and the hydrogen embrittlement sensitivity of the steel increases. As a whole, after annealing treatment within the recovery and recrystallization stage, the 304 austenitic stainless steel present better comprehensive properties.

Key wordsaustenitic stainless steel    anneal    inverse martensite transformation    recovery and recrystallization    hydrogen embrittlement sensitivity
收稿日期: 2024-03-11      32134.14.1005.4537.2024.078
ZTFLH:  TG337.5  
基金资助:山西省高等学校科技创新项目(2024L592);山西工程职业学院2024年度揭榜挂帅课题(KY2024-1);山西省职业教育教学改革与实践研究项目(202303022)
通讯作者: 张慧云,E-mail:245883278@qq.com,研究方向为钢的氢脆
Corresponding author: ZHANG Huiyun, E-mail: 245883278@qq.com
作者简介: 张慧云,女,1987年生,博士,副教授
图1  电化学充氢装置以及拉伸样品示意图
图2  冷轧态以及700 ℃下1 min和3 min退火态样品的IPF图和相分布图
图3  冷轧态以及700 ℃下1 min和3 min退火态实验钢充氢前后的应力-应变曲线和氢脆敏感性
图4  冷轧态以及700 ℃下1 min和3 min退火态实验钢的氢解吸速率随温度变化曲线
图5  700 ℃-5 min,700 ℃-10 min以及800 ℃-10 min试样的BC图和IPF图
图6  700 ℃-5 min,700 ℃-10 min以及800 ℃-10 min试样的KAM图和KAM值
图7  700 ℃-5 min, 700 ℃-10 min以及800 ℃-10 min试样的再结晶图和再结晶分数
图8  700 ℃-5 min,700 ℃-10 min以及800 ℃-10 min试样充氢前后的应力-应变曲线和氢脆敏感性
图9  700 ℃-5 min,700 ℃-10 min以及800 ℃-10 min试样的氢解吸速率随温度变化曲线
图10  900 ℃-30 min和1000 ℃-60 min试样的BC图、KAM图、IPF图以及平均晶粒尺寸
图11  900℃-30 min和1000 ℃-60 min试样充氢前后的应力-应变曲线和氢脆敏感性
图12  900 ℃-30 min和1000 ℃-60 min试样的氢解吸速率随温度变化曲线
Sampled / μmSv / m2·m-3XH / mg·kg-1XHGB / g·m-2
900 oC-30 min20.011.0 × 1055.484.3 × 10-4
1000 oC-60 min30.356.59 × 1043.914.7 × 10-4
表1  假设所有氢都位于晶界, 计算得到的晶粒尺寸(d)、单位体积晶界面积(Sv)、扩散氢含量(XH)和单位晶界面积氢含量(XHGB)汇总
图13  900 ℃-30 min和1000 ℃-60 min试样充氢后的拉伸断口形貌
SampleYield strength / MPaTensile strength / MPaElongation / %H content / mg·kg-1HE sensitivity / %
CR-20%850 ± 71070 ± 1532.0 ± 3.020.5352.38 ± 1.5
700 oC-1 min745 ± 8960 ± 1142.6 ± 2.310.6613.61 ± 1.3
700 oC-3 min720 ± 6935 ± 1343.5 ± 1.58.6513.20 ± 0.8
700 oC-5 min670 ± 4930 ± 1645.2 ± 2.77.4911.68 ± 0.5
700 oC-10 min645 ± 3920 ± 1449.6 ± 3.86.317.41 ± 0.4
800 oC-10 min490 ± 9900 ± 1554.0 ± 2.63.626.94 ± 0.6
900 oC-30 min250 ± 8805 ± 1267.7 ± 1.55.480.74 ± 0.1
1000 oC-60 min215 ± 5725 ± 1073.3 ± 0.53.9111.08 ± 0.9
表2  冷轧态以及不同条件退火态304奥氏体不锈钢的性能对比
1 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
2 Pinson M, Springer H, Depover T, et al. Qualification of the in-situ bending technique towards the evaluation of the hydrogen induced fracture mechanism of martensitic Fe-C steels [J]. Mater. Sci. Eng., 2020, 792A: 139754
3 Fan Y H. Effect of microstructures on the hydrogen embrittlement of stainless steels [D]. Shenyang: University of Science and Technology of China, 2019
3 范宇恒. 不锈钢微观组织结构对其氢脆性能的影响 [D]. 沈阳: 中国科学技术大学, 2019
4 Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
5 Wu X P. Effect of plastic deformation and annealing treatment on hydrogen embrittlement susceptibility of 304 austenitic stainless steel [D]. Xuzhou: China University of Mining and Technology, 2020
5 吴玄培. 塑性变形及退火处理对304奥氏体不锈钢氢脆敏感性影响研究 [D]. 徐州: 中国矿业大学, 2020
6 Zhang H Y, Zheng L W, Meng X M, et al. Effect of cold deformation on microstructure and hydrogen embrittlement sensitivity of 304 austenitic stainless steel [J]. Hot Work. Technol., 2021, 50(9): 61
6 张慧云, 郑留伟, 孟宪明 等. 冷变形对304奥氏体不锈钢组织及氢脆敏感性的影响 [J]. 热加工工艺, 2021, 50(9): 61
7 Zhao X L. Study of the susceptibility to hydrogen embrittlement of medium-Mn steel [D]. Beijing: Beijing Iron and Steel Research Institute, 2019
7 赵晓丽. 高强塑积中锰钢氢脆敏感性的研究 [D]. 北京: 北京钢铁研究总院, 2019
8 Jiang W, Gong J M, Wang Y F, et al. Plasticity comparison of 304L austenitic stainless steel before and after electrochemical hydrogen charging [J]. Mater. Mech. Eng., 2012, 36(2): 28
8 蒋 旺, 巩建鸣, 王艳飞 等. 电化学充氢前后304L 奥氏体不锈钢的塑性对比 [J]. 机械工程材料, 2012, 36(2): 28
9 Jiang Y, Gong J M, Zhou R R, et al. Effect of hydrogen on mechanical properties of 304L austenitic stainless steel [J]. Mater. Mech. Eng., 2009, 33(11): 15
9 姜 勇, 巩建鸣, 周荣荣 等. 氢对304L 奥氏体不锈钢力学性能的影响 [J]. 机械工程材料, 2009, 33(11): 15
10 Sun G S, Du L X, Hu J, et al. Low temperature superplastic-like deformation and fracture behavior of nano/ultrafine-grained metastable austenitic stainless steel [J]. Mater. Des., 2017, 117: 223
11 Fan Y H, Zhang B, Wang J Q, et al. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 2213
doi: 10.1016/j.jmst.2019.03.043
12 Zhang M, Sun G S, Qin D Y, et al. Behavior of martensite reverse transformation and austenite recrystallization of cold-rolled 304 stainless steel [J]. Heat Treat. Met., 2021, 46(7): 51
doi: 10.13251/j.issn.0254-6051.2021.07.010
12 张 梅, 孙国胜, 秦岽烊 等. 冷轧304不锈钢的马氏体逆相变及奥氏体再结晶行为 [J]. 金属热处理, 2021, 46(7): 51
13 Sun Q Q, Han J H, Li J X, et al. Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering [J]. Corros. Commun., 2022, 6: 48
14 Zhang H Y, Zheng L W, Meng X M, et al. Effect of electrochemical hydrogen charging on hydrogen embrittlement sensitivity of Cr15 ferritic and 304 austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 202
14 张慧云, 郑留伟, 孟宪明 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 202
doi: 10.11902/1005.4537.2020.099
15 Zhu X, Zhang K, Li W, et al. Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels [J]. Mater. Sci. Eng., 2016, 658A: 400
16 Jedrychowski M, Tarasiuk J, Bacroix B, et al. Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium. A new approach in grain boundary analysis [J]. J. Appl. Crystallogr., 2013, 46: 483
17 Bai Y, Momotani Y, Chen M C, et al. Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel [J]. Mater. Sci. Eng., 2016, 651A: 935
18 Park C, Kang N, Liu S. Effect of grain size on the resistance to hydrogen embrittlement of API 2W Grade 60 steels using in situ slow-strain-rate testing [J]. Corros. Sci., 2017, 128: 33
19 Procter R P M. Hydrogen degradation of ferrous alloys [J]. Br. Corros. J., 1986, 21: 79
[1] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[2] 雷艾嘉, 戴训, 许江涛, 邓睿驹, 黄雪飞. Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[3] 程凯源, 彭杨, 黄峰, 程向龙, 徐云峰, 彭志贤, 刘静. 典型无缝钢管钢掺氢天然气环境适应性及氢致损伤机理[J]. 中国腐蚀与防护学报, 2025, 45(2): 397-406.
[4] 刘国强, 冯长杰, 辛丽, 马天宇, 常皓, 潘钰璇, 朱圣龙. 钛合金表面Ti-Al-Si扩散涂层的制备和显微结构[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[5] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[6] 高俊宣, 曹晗, 匡文军, 郑全, 张鹏, 钟巍华. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[7] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[8] 徐云峰, 王少峰, 何龙, 刘冬, 黄峰, 刘静. EPS处理对QStE700TM钢氢脆敏感性影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[9] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[10] 王智慧, 吴雷, 姜懿珊, 张弦, 万响亮, 李光强, 吴开明. 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[11] 王艳飞, 李耀州, 黄玉婷, 谢宏琳, 吴炜杰. 晶粒尺寸对304L奥氏体不锈钢氢脆的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[12] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[13] 韩瑞珠, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢的热腐蚀行为及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[14] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[15] 陈婷婷, 武晓雷, 韩培德. SMAT技术制备梯度纳米孪晶结构及其腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.