Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 431-437     CSTR: 32134.14.1005.4537.2024.069      DOI: 10.11902/1005.4537.2024.069
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响
汤熠鑫1, 张飞2, 崔中雨1, 崔洪芝1, 李燚周1()
1.中国海洋大学材料科学与工程学院 青岛 266100
2.中核武汉核电运行技术股份有限公司 武汉 430074
Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution
TANG Yixin1, ZHANG Fei2, CUI Zhongyu1, CUI Hongzhi1, LI Yizhou1()
1.Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2.China Nuclear Power Operation Technology Corporation, Wuhan 430074, China
引用本文:

汤熠鑫, 张飞, 崔中雨, 崔洪芝, 李燚周. 氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
Yixin TANG, Fei ZHANG, Zhongyu CUI, Hongzhi CUI, Yizhou LI. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 431-437.

全文: PDF(11890 KB)   HTML
摘要: 

采用动电位极化、Mott-Schottky测试、恒电位极化测试技术以及扫描电子显微镜和共聚焦激光显微镜等方法研究了阴极充氢对2205双相不锈钢在3.5%NaCl溶液中缝隙腐蚀行为的影响。结果表明,充氢后钝化膜缺陷增多,点蚀电位显著降低。这导致充氢后2205双相不锈钢具有更低的临界缝隙腐蚀电位和更高的缝隙腐蚀敏感性。未充氢试样的缝隙腐蚀形貌主要表现为缝隙内的点蚀及条状腐蚀,充氢后试样在高电位下表现为缝隙口处的沟槽状腐蚀,在低电位下表现为缝隙内的点蚀。

关键词 2205双相不锈钢阴极极化恒电位极化缝隙腐蚀    
Abstract

The effect of cathodically hydrogen charging on the crevice corrosion behavior of 2205 duplex stainless steel in 3.5%NaCl solution was investigated by means of measurements of potentiodynamic polarization, Mott-Schottky, and potentiostatic polarization, as well as scanning electron microscopy (SEM) and confocal laser microscopy (CLSM). The results show that the defect density of the passive film on the surface of 2205 duplex stainless steel increases, and the pitting potential decreases significantly with the increased hydrogen charging time. This results in the decrease of the critical crevice corrosion potential and the increased crevice corrosion susceptibility. The pitting corrosion and the striped corrosion inside the crevice is observed for the specimen without hydrogen charging. However, for the specimen with hydrogen charging, the grooved corrosion at the crevice mouth is observed at the high polarized potential, and the pitting corrosion inside crevice founded at the low polarized potential.

Key words2205 duplex stainless steel    cathodic polarization    potentiostatic polarization    crevice corrosion
收稿日期: 2024-03-05      32134.14.1005.4537.2024.069
ZTFLH:  TG174  
基金资助:国家自然科学基金(51901217)
通讯作者: 李燚周,E-mail:liyizhou@ouc.edu.cn,研究方向为材料腐蚀与防护
Corresponding author: LI Yizhou, E-mail: liyizhou@ouc.edu.cn
作者简介: 汤熠鑫,男,1999年生,硕士生
图1  2205双相不锈钢的金相显微组织
图2  缝隙腐蚀实验装置、试样及其装配示意图
图3  3.5%NaCl溶液中2205双相不锈钢在不同充氢时间下的动电位极化曲线及其相应的点蚀击穿电位和钝化电流密度
图4  3.5%NaCl溶液中不同充氢时间下2205双相不锈钢的M-S曲线和载流子密度
图5  3.5%NaCl溶液中2205双相不锈钢充氢不同时间后在不同极化电位下的恒电位极化曲线
图6  未充氢的2205双相不锈钢在不同电位下恒电位极化4 h后的表面形貌以及腐蚀区轮廓
图7  充氢2 h后2205双相不锈钢在不同电位下恒电位极化4 h后的表面形貌以及腐蚀区轮廓
图8  充氢6 h后2205双相不锈钢在不同电位下恒电位极化4 h后的表面形貌以及腐蚀区轮廓
1 Wang R. Precipitation of sigma phase in duplex stainless steel and recent development on its detection by electrochemical potentiokinetic reactivation: A review[J]. Corros. Commun., 2021, 2: 41
2 Wang L, Ding Y, Lu Q, et al. Microstructure and corrosion behavior of welded joints between 2507 super duplex stainless steel and E690 low alloy steel [J]. Corros. Commun., 2023, 11: 1
3 Huang J Z, Huang T, Yang L J, et al. Electrochemical properties and offshore corrosion behavior of SAF 2304 duplex stainless steel[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 630
3 黄家针, 黄 涛, 杨丽景 等. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 630
doi: 10.11902/1005.4537.2022.217
4 Wang X T, Chen X, Han Z Z, et al. Stress corrosion cracking behavior of 2205 duplex stainless steel in 3.5%NaCl solution with sulfate reducing bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 43
4 王欣彤, 陈 旭, 韩镇泽 等. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 43
doi: 10.11902/1005.4537.2019.268
5 Peng Q J, Zhang Z M, Wang J Q, et al. Influence of dissolved hydrogen on oxidation of stainless steel 316L in simulated pwr primary water [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 217
5 彭青姣, 张志明, 王俭秋 等. 溶解氢对316L不锈钢在模拟压水堆一回路水中氧化行为的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 217
6 Zhang H Y, Zheng L W, Meng X M, et al. Effect of electrochemical hydrogen charging on hydrogen embrittlement sensitivity of Cr15 ferritic and 304 austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 202
6 张慧云, 郑留伟, 孟宪明 等. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学 报, 2021, 41: 202
7 Okayasu M, Fujiwara T. Effects of microstructural characteristics on the hydrogen embrittlement characteristics of austenitic, ferritic, and γ-α duplex stainless steels [J]. Mat. Sci. Eng. A-Struct., 2021, 807: 140851
8 Zhang X S, Wang S J, Wang X, et al. The stress corrosion cracking behavior of N80 carbon steel under a crevice in an acidic solution containing different concentrations of NaCl [J]. Corros. Sci., 2023, 216: 111068
9 Li W, Cao R, Xu L, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
10 Tong H S, Sun Y H, Su Y J, et al. Investigation on hydrogen-induced cracking behavior of 2205 duplex stainless steel used for marine structure [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 130
10 童海生, 孙彦辉, 宿彦京 等. 海工结构用2205双相不锈钢氢致开裂行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 130
doi: 10.11902/1005.4537.2017.212
11 Yao J, Dong C, Man C, et al. The electrochemical behavior and characteristics of passive film on 2205 duplex stainless steel under various hydrogen charging conditions [J]. Corrosion, 2016, 72: 42
12 Yao Y, Qiao L J, Volinsky A A. Hydrogen effects on stainless steel passive film fracture studied by nanoindentation[J]. Corros. Sci., 2011, 53: 2679
13 Wu C, Wang Z, Zhang Z, et al. Influence of crevice width on sulfate-reducing bacteria (SRB)-induced corrosion of stainless steel 316L [J]. Corros. Commun., 2021, 4: 33
14 Han D, Jiang Y M, Shi C, et al. Effect of temperature, chloride ion and pH on the crevice corrosion behavior of SAF 2205 duplex stainless steel in chloride solutions [J]. J. Mater. Sci., 2012, 47: 1018
15 Aoyama T, Sugawara Y, Muto I, et al. In situ monitoring of crevice corrosion morphology of type 316L stainless steel and repassivation behavior induced by sulfate ions [J]. Corros. Sci., 2017, 127: 131
16 Zhu L Y, Cui Z Y, Cui H Z, et al. The effect of applied stress on the crevice corrosion of 304 stainless steel in 3.5wt%NaCl solution [J]. Corros. Sci., 2022, 196: 110039
17 Qiao L J, Zeng Y M, Chu W Y. Effects of hydrogen on pitting susceptibility of type 310 stainless steel [J]. J. Chin. Soc. Corros. Prot., 1998: 75
17 乔利杰, 曾一民, 褚武扬. 氢对310不锈钢点蚀敏感性的影响 [J]. 中国腐蚀与防护学报, 1998: 75
18 Wang X Z, Luo H, Luo J L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment [J]. Electrochim. Acta, 2019, 293: 60
19 Zeng Y M, Qiao L J, Lin C J, et al. Effects of pre-charged hydrogen on passive film of type 310 stainless steel [J]. J. Chin. Soc. Corros. Prot., 1999: 42
19 曾一民, 乔利杰, 林昌健 等. 氢对310不锈钢钝化膜的影响 [J]. 中国腐蚀与防护学报, 1999: 42
20 Wallinder D, Hultquist G, Tveten B, et al. Hydrogen in chromium: influence on corrosion potential and anodic dissolution in neutral NaCl solution [J]. Corros. Sci., 2001, 43: 1267
21 Oladoye A, Osoba L. Corrosion behavior of wire arc additive manufactured and wrought 309 stainless steel in acidic solution [J]. Corros. Commun., 2022, 8: 81
22 Zhao Y, Xiong H, Li X, et al. Improved corrosion performance of selective laser melted stainless steel 316L in the deep-sea environment [J]. Corros. Commun., 2021, 2: 55
23 Zeng L, Guo X P, Zhang G A, et al. Semiconductivities of passive films formed on stainless steel bend under erosion-corrosion conditions [J]. Corros. Sci., 2018, 144: 258
24 Geringer J, MacDonald D D. Modeling fretting-corrosion wear of 316L SS against poly (methyl methacrylate) with the Point Defect Model: Fundamental theory, assessment, and outlook [J]. Electrochim. Acta, 2012, 79: 17
25 Pan Y, Sun B, Liu Z, et al. Hydrogen effects on passivation and SCC of 2205 DSS in acidified simulated seawater [J]. Corros. Sci., 2022, 208: 110640
26 Abdulsalam M I. The role of electrolyte concentration on crevice corrosion of pure nickel [J]. Mater. Corros., 2007, 58: 511
[1] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[2] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[3] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[4] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[5] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[6] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[7] 吕正平, 李缘, 刘晓航, 崔中雨, 崔洪芝, 王昕, 逄昆, 李燚周. 酸性氯化钠溶液中硝酸钠和硫脲对7075铝合金缝隙腐蚀的协同缓蚀作用[J]. 中国腐蚀与防护学报, 2023, 43(6): 1367-1374.
[8] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] 白一涵, 张航, 朱泽洁, 王疆瑛, 曹发和. 缝隙腐蚀内部微区离子浓度监测的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 828-836.
[10] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[11] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[12] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[13] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[15] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.