Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 69-80     CSTR: 32134.14.1005.4537.2024.239      DOI: 10.11902/1005.4537.2024.239
  研究报告 本期目录 | 过刊浏览 |
钛合金表面Ti-Al-Si扩散涂层的制备和显微结构
刘国强1, 冯长杰2, 辛丽1(), 马天宇1,3, 常皓1, 潘钰璇1, 朱圣龙1
1 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2 沈阳航空航天大学材料科学与工程学院 沈阳 110136
3 东北大学材料科学与工程学院 沈阳 110819
Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy
LIU Guoqiang1, FENG Changjie2, XIN Li1(), MA Tianyu1,3, CHANG Hao1, PAN Yuxuan1, ZHU Shenglong1
1 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science & Engineering, Shenyang Aerospace University, Shenyang 110136, China
3 School of Materials Science &Engineering, Northeastern University, Shenyang 110819, China
引用本文:

刘国强, 冯长杰, 辛丽, 马天宇, 常皓, 潘钰璇, 朱圣龙. 钛合金表面Ti-Al-Si扩散涂层的制备和显微结构[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
Guoqiang LIU, Changjie FENG, Li XIN, Tianyu MA, Hao CHANG, Yuxuan PAN, Shenglong ZHU. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 69-80.

全文: PDF(21290 KB)   HTML
摘要: 

采用离子镀的方法将Si含量不同的Al-Si合金涂层沉积在钛合金表面,然后在不同温度下进行真空退火处理,得到不同组成结构的扩散Ti-Al-(Si)涂层。结果表明,650 ℃真空退火,得到的扩散Ti-Al-(Si)涂层是以TiAl3相为主的单层涂层,Si置换固溶于TiAl3形成Ti(Al, Si)3固溶体,当涂层中Si含量超过15% (原子分数),τ2相Ti-Al-Si三元化合物析出,与Ti(Al, Si)3固溶体构成多相单层涂层,上述单层涂层中都存在明显的贯穿裂纹。800和900 ℃真空退火,得到的扩散Ti-Al-(Si)涂层为多层结构;表层为TiAl3层,Si置换固溶于TiAl3层中,Si含量较高时,Ti-Si二元或(和)Ti-Al-Si三元化合物作为第二相析出,析出相的数量随退火温度升高递增;TiAl3层与钛合金基体之间为TiAl2、TiAl、Ti3Al、Ti5Si3和Ti5Si4中一个或多个构成的中间层。多层结构明显地抑制了扩散Ti-Al-Si涂层中贯穿裂纹的形成。

关键词 Si改性铝化物涂层钛合金真空退火扩散显微结构    
Abstract

Al-Si coatings with different Si content were deposited on the surface of Ti-6Al-4V alloy by multi-arc ion plating, then vacuum annealing treatment of the coated alloy were carried out at different temperatures in the range 600~900 oC. Finally, diffused Ti-Al-(Si) coatings of different microstructure were obtained. The results showed that the diffused coatings obtained by annealing at 650 oC were single layer coatings mainly composed of TiAl3. Si substituted for Al atoms in the TiAl3 lattice and formed Ti(Al, Si)3 solid solution. When the Si content in the coating exceeded 15% (atomic fraction), the solid solubility limit of Si in TiAl3 lattice, Ti-Al-Si ternary compounds precipitated, forming multi-phase coating with Ti(Al, Si)3. Penetrating cracks formed for all the single layer coatings. The diffused coatings obtained by annealing at 800 oC and 900 ℃ exhibited a multilayered structure, where, the outmost layer was mainly composed of TiAl3 and Si was dissolved in the TiAl3. When the Si content was high in the coatings, Ti-Si binary and/or Ti-Al-Si ternary compounds precipitated and the amount of the precipitates increased with the increasing of annealing temperature. Intermediate layers between the TiAl3 layer and the Ti-alloy substrate were composed of one or two of the TiAl2, TiAl, Ti3Al, Ti5Si3 and Ti5Si4 layers. The multilayered structure can obviously suppress the formation of penetrating cracks on the diffused Ti-Al-Si coatings.

Key wordsSi modified aluminide coating    Ti-alloy    vacuum annealing treatment    diffusion    microstructure
收稿日期: 2024-08-01      32134.14.1005.4537.2024.239
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(52371085);兴辽英才计划(XLYC2002031)
通讯作者: 辛丽,E-mail:xli@imr.ac.cn,研究方向为高温腐蚀与防护及高温防护涂层
Corresponding author: XIN Li, E-mail: xli@imr.ac.cn
作者简介: 刘国强,男,1999年生,博士生
图1  25.7Si涂层试样经600 ℃真空退火7 h后的XRD谱图
图2  25.7Si涂层及其600 ℃退火7 h后得到的扩散涂层的表面和截面形貌
ZonesAlSiTiV
198.590.900.51-
245.2630.1324.040.57
356.0519.3524.140.46
414.8251.0333.370.78
542.0732.0622.703.17
615.4212.2170.731.64
表1  图2中标示区域的EDS成分分析结果 (atomic fraction / %)
图3  计算得到的Ti-Al-Si体系在600 ℃的等温截面图
图4  0Si-650、5.2Si-650、12.5Si-650和25.7Si-650涂层的XRD谱图
图5  0Si-650、5.2Si-650、12.5Si-650和25.7Si-650涂层的表面、截面形貌及EDS元素线扫描结果
ZonesAlSiTiV
174.76-24.111.13
271.023.7623.971.25
364.5410.7523.970.74
459.7015.5823.820.90
553.8519.8225.321.01
636.7334.2328.011.03
734.6435.6428.990.73
860.1913.9125.020.88
916.144.9273.765.18
表2  图5中标示区域的EDS成分分析结果 (atomic fraction / %)
图6  计算得到的Ti-Al-Si体系在650 ℃的等温截面图
图7  0Si-800、5.2Si-800、12.5Si-800和25.7Si-800涂层的XRD谱图
图8  0Si-800、5.2Si-800、12.5Si-800和25.7Si-800涂层的表面、截面形貌及元素线扫描结果
ZonesAlSiTiV
174.40-24.311.29
265.17-33.601.23
345.49-51.872.64
416.95-80.462.59
569.254.3925.610.75
656.972.9137.592.53
730.260.5666.452.73
815.720.2481.492.55
963.979.8625.011.16
1060.5412.0525.961.45
1151.996.8938.422.70
1225.490.7971.432.29
1362.5712.3824.070.98
1461.5211.7426.040.70
1544.0223.6330.891.46
1613.3836.1648.292.17
表3  图8中标示区域的EDS成分分析结果 (atomic fraction / %)
图9  计算得到的Ti-Al-Si体系在800 ℃的等温截面图
图10  0Si-900、5.2Si-900、12.5Si-900和25.7Si-900涂层的XRD谱图
图11  0Si-900、5.2Si-900、12.5Si-900和25.7Si-900涂层的表面、截面形貌及元素面分布
ZonesAlSiTiV
174.71-24.241.05
266.59-32.361.05
355.26-42.342.40
426.40-71.242.36
566.554.0828.071.30
659.702.9835.282.04
748.861.4647.322.36
821.990.7374.782.50
967.804.8126.550.84
1049.5611.3136.912.22
1143.474.9748.972.59
1220.960.9575.852.24
1361.609.9525.582.87
1433.3828.4336.471.72
1560.7910.0927.621.50
1633.5228.1637.380.94
177.1832.9457.842.04
表4  图11中标示区域的EDS成分分析结果
图12  计算得到的Ti-Al-Si体系在900 ℃的等温截面图
1 Amigó-Borrás V, Lario-Femenía J, Amigó-Mata A, et al. Titanium, titanium alloys and composites [J]. Encycl. Mater., 2022, 1: 179
2 Peters M, Kumpfert J, Ward C H, et al. Titanium alloys for aerospace applications [J]. Adv. Eng. Mater., 2003, 5: 419
3 Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today, 2022, 54: 537
4 Ebach-Stahl A, Eilers C, Laska N, et al. Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700 oC in air [J]. Surf. Coat. Technol., 2013, 223: 24
5 Berthaud M, Popa I, Chassagnon R, et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 oC: effect of oxygen dissolution on lattice parameters [J]. Corros. Sci., 2020, 164: 108049
6 Dai J J, Zhu J Y, Chen C Z, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review [J]. J. Alloy. Compd., 2016, 685: 784
7 Vaché N, Cadoret Y, Dod B, et al. Modeling the oxidation kinetics of titanium alloys: review, method and application to Ti-64 and Ti-6242s alloys [J]. Corros. Sci., 2021, 178: 109041
8 Parthasarathy T A, Porter W J, Boone S, et al. Life prediction under tension of titanium alloys that develop an oxygenated brittle case during use [J]. Scr. Mater., 2011, 65: 420
9 Tsipas S A, Gordo E, Jiménez-Morales A. Oxidation and corrosion protection by halide treatment of powder metallurgy Ti and Ti6Al4V alloy [J]. Corros. Sci., 2014, 88: 263
10 Patel P, Jamnapara N I, Zala A, et al. Investigation of hot-dip aluminized Ti6Al4V alloy processed by different thermal treatments in an oxidizing atmosphere [J]. Surf. Coat. Technol., 2020, 385: 125323
11 Sitek R, Kaminski J, Borysiuk J, et al. Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method [J]. Intermetallics, 2013, 36: 36
12 Trivedi S P, Das D K. Microstructural aspects of plain aluminide and Pt-aluminide coatings on Ti-base alloy IMI-834 [J]. Intermetallics, 2005, 13: 1122
13 Tian H, Zhou K, Zou Y C, et al. Microstructure and high temperature oxidation resistance property of packing Al cementation on Ti-Al-Zr alloy [J]. Surf. Coat. Technol., 2019, 374: 1051
14 Alam M Z, Das D K. Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy [J]. Corros. Sci., 2009, 51: 1405
15 McMordie B G. Oxidation resistance of slurry aluminides on high temperature titanium alloys [J]. Surf. Coat. Technol., 1991, 49: 18
16 Wang D Q, Shi Z Y, Teng Y L. Microstructure and oxidation of hot-dip aluminized titanium at high temperature [J]. Appl. Surf. Sci., 2005, 250: 238
17 Cammarota G P, Casagrande A, Sambogna G. Effect of Ni, Si and Cr in the structural formation of diffusion aluminide coatings on commercial-purity titanium [J]. Surf. Coat. Technol., 2006, 201:230
18 Hu X Y, Li F G, Shi D M, et al. A design of self-generated Ti-Al-Si gradient coatings on Ti-6Al-4V alloy based on silicon concentration gradient [J]. J. Alloy. Compd., 2020, 830: 154670
19 Oukati Sadeq F, Sharifitabar M, Shafiee Afarani M. Synthesis of Ti-Si-Al coatings on the surface of Ti-6Al-4V alloy via hot dip siliconizing route [J]. Surf. Coat. Technol., 2018, 337: 349
20 Kubatík T F. High-temperature oxidation of silicide-aluminide layer on the TiAl6V4 alloy prepared by liquid-phase siliconizing [J]. Mater. Tehnol., 2016, 50: 257
21 Vojtěch D, Kubatík T, Pavlíčková M, et al. Intermetallic protective coatings on titanium [J]. Intermetallics, 2006, 14: 1181
22 Xiong H P, Mao W, Ma W L, et al. Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance [J]. Mater. Sci. Eng., 2006, 433A: 108
23 Gupta S P. Intermetallic compounds in diffusion couples of Ti with an Al-Si eutectic alloy [J]. Mater. Charact., 2002, 49: 321
24 Zhu G L, Shu D, Dai Y B, et al. First principles study on the substitution behavior of Si in TiAl3 [J]. Acta Phys. Sin., 2009, 58(suppl.): 210
24 祝国梁, 疏 达, 戴永兵 等. Si在TiAl3中取代行为的第一性原理研究 [J]. 物理学报, 2009, 58(): 210
25 Brukl C, Nowotny H, Schob O, et al. Die Kristallstruckturen von TiSi, Ti(Al, Si)2 und Mo(Al, Si)2 [J]. Monatshefte für Chemie, 1961, 92(3): 781
26 Rao K P, Zhou J B. Characterization of mechanically alloyed Ti-Al-Si powder blends and their subsequent thermal stability [J]. Mater. Sci. Eng., 2002, 338A: 282
27 Dai J J, Zhang F Y, Wang A M, et al. Microstructure and properties of Ti-Al coating and Ti-Al-Si system coatings on Ti-6Al-4V fabricated by laser surface alloying [J]. Surf. Coat. Technol., 2017, 309: 805
28 Zhang Z G, Peng Y P, Mao Y L, et al. Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures [J]. Corros. Sci., 2012, 55: 187
29 Benci J E, Ma J C, Feist T P. Evaluation of the intermetallic compound Al2Ti for elevated-temperature applications [J]. Mater. Sci. Eng., 1995, 192-193A: 38
30 Shashikala H D, Suryanarayana S V, Murthy K S N, et al. Thermal expansion characteristics of Ti3Al and the effect of additives [J]. J. Less-Common Met., 1989, 155: 23
31 Vojtěch D, Bártová B, Kubatı́K T. High temperature oxidation of titanium-silicon alloys [J]. Mater. Sci. Eng., 2003, 361A: 50
32 Zhang Y K, Lei Y, Ma W H, et al. Evaluation of thermal conductivities and thermal expansion coefficients of TiSi2 and Ti5Si3 ceramics prepared from Ti- and Si-rich wastes [J]. Ceram. Int., 2024, 50: 3373
[1] 李晗晔, 张志超, 王群昌, 古岩, 陈泽浩, 杨莎莎, 梅飞强. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[2] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[3] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[4] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[5] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[6] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[7] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[8] 吴进怡, 柴柯, 李晓琳, 尚瑾, 李强, 吴耀华. 海水环境因素对网纹藤壶金星幼虫附着的影响机制[J]. 中国腐蚀与防护学报, 2024, 44(5): 1316-1322.
[9] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[10] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[11] 姚婵, 陈健, 明洪亮, 王俭秋. 管线钢氢渗透行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[12] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[13] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[14] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[15] 丁奕, 王力伟, 刘德运, 王昕. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.