Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1610-1616     CSTR: 32134.14.1005.4537.2024.043      DOI: 10.11902/1005.4537.2024.043
  研究报告 本期目录 | 过刊浏览 |
B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响
马晋遥1,2, 董楠1, 郭振森1, 韩培德1()
1.太原理工大学材料科学与工程学院 太原 030024
2.太原理工大学分析测试中心 太原 030024
Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel
MA Jinyao1,2, DONG Nan1, GUO Zhensen1, HAN Peide1()
1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2. Instrumental Analysis Center of Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
Jinyao MA, Nan DONG, Zhensen GUO, Peide HAN. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1610-1616.

全文: PDF(11049 KB)   HTML
摘要: 

采用OM、SEM、EDS、电化学测试等方法研究了B、Ce微合金化对S31254超级奥氏体不锈钢的析出相及耐蚀性的影响。析出相分析结果表明,B、Ce的添加都有抑制时效过程中析出相的析出作用,并且B、Ce复合后可改变析出相沿晶界的析出形态。电化学结果显示,B、Ce复合微合金化可提高材料的自腐蚀电位和点蚀电位,促进钝化膜的快速形成并同步提升其稳定性,改善材料的耐点蚀与耐晶间腐蚀性能。因此,本文的研究结果表明相较单一B元素的添加,B、Ce协同对S31254析出相的抑制和耐蚀性提高效果更为显著。

关键词 S31254超级奥氏体不锈钢B、Ce微合金化析出相耐蚀性能    
Abstract

The effect of B and Ce micro-alloying on secondary phase precipitation and corrosion resistance of S31254 super austenitic stainless steel were studied by OM, SEM, EDS and electrochemical tests. The results show that the addition of B and Ce can inhibit the precipitation of secondary phase in the aging process and change the morphology of precipitated phase along the grain boundary. The B and Ce micro-alloying can also improve the free-corrosion potential and pitting potential of the S31254 super austenitic stainless steel, promote the rapid formation of passive film, improve its stability synchronously, thus improve the pitting and intergranular corrosion resistance of the steel. Therefore, it follows that the synergistic effect of both B and Ce co-alloying on precipitation inhibition and corrosion resistance of S31254 is significantly more pronounced when compared to the addition of a single B element.

Key wordsS31254 super austenitic stainless steel    B    Ce micro-alloying    precipitated phase    corrosion resistance
收稿日期: 2024-02-02      32134.14.1005.4537.2024.043
ZTFLH:  TG174  
通讯作者: 韩培德,E-mail:hanpeide@tyut.edu.cn,研究方向为钢铁材料结构与性能
Corresponding author: HAN Peide, E-mail: hanpeide@tyut.edu.cn
作者简介: 马晋遥,男,1989年生,博士,助理研究员
SampleCSiMnPSCrNiMoCuNBCe
0B0.0120.640.470.0350.00619.1818.116.170.710.2000
50B0.0120.610.490.0170.00518.5918.116.120.580.200.0050
50B-20Ce0.0180.171.820.0070.00219.8418.076.210.560.1990.0050.002
50B-50Ce0.0150.171.870.0080.00220.0817.946.020.480.1870.0050.005
表 1  实验用S31254不锈钢化学成分 (mass fraction / %)
图1  热处理工艺示意图
图2  4种S31254不锈钢经1220℃保温2 h固溶处理后的显微组织
图3  4种S31254不锈钢经950℃时效90 min后的SEM图
图4  4种S31254不锈钢在950℃时效90 min试样的EDS面扫图
PositionFeCrMoNi
0B-1(Fig.4a-1)39.226.722.38.1
0B-2(Fig.4a-2)44.525.621.88.1
50B-1(Fig.4b-1)38.722.924.69.9
50B-2(Fig.4b-2)39.822.822.710.8
50B-20Ce-1(Fig.4c-1)39.626.117.89.1
50B-20Ce-2(Fig.4c-2)40.225.716.69.4
50B-50Ce-1(Fig.4d-1)42.520.615.39.7
50B-20Ce-2(Fig.4d-2)42.420.215.710.6
表2  4种S31254不锈钢在950℃时效90 min后析出相的化学成分 (mass fraction / %)
图5  4种S31254不锈钢经950℃时效30 min后的动电位极化曲线和阻抗谱
SampleEcorr / VIcorr / A·cm-2Epit / V
0B-0.30767.4063 × 10-70.9791
50B-0.28065.6066 × 10-71.0264
50B-20Ce-0.23764.3216 × 10-71.0284
50B-50Ce-0.15061.0656 × 10-71.0319
表3  4种S31254不锈钢经950℃时效30 min后的动电位极化曲线拟合参数
图6  4种S31254不锈钢固溶后及在沸腾的硫酸-硫酸铁溶液中浸泡24 h后的形貌
1 Pu E X, Zheng W J, Xiang J Z, et al. Hot working characteristic of superaustenitic stainless steel 254SMO [J]. Acta Metall. Sin. Engl. Lett., 2014, 27: 313
2 Xing J, Liu C Z, Li A M, et al. Microstructural evolution and stability of coarse-grained S31254 super austenitic stainless steel during hot deformation [J]. Metals, 2022, 12: 1319
3 Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
4 Ge F, Wang L W, Dou Y P, et al. Elucidating the passivation kinetics and surface film chemistry of 254SMO stainless steel for chimney construction in simulated desulfurized flue gas condensates [J]. Constr. Build. Mater., 2021, 285: 122905
5 Zhang B B, Jiang Z H, Li H B, et al. Precipitation behavior and phase transformation of hyper duplex stainless steel UNS S32707 at nose temperature [J]. Mater. Charact., 2017, 129: 31
6 Zhang S C, Li H B, Jiang Z H, et al. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654 [J]. Mater. Charact., 2019, 152: 141
7 Li X X, Ou M Q, Wang M, et al. Effect of boron addition on the microstructure and mechanical properties of K4750 nickel-based superalloy [J]. J. Mater. Sci. Technol., 2021, 60: 177
doi: 10.1016/j.jmst.2020.02.079
8 Takahashi J, Ishikawa K, Kawakami K, et al. Atomic-scale study on segregation behavior at austenite grain boundaries in boron- and molybdenum-added steels [J]. Acta Mater., 2017, 133: 41
9 Laha K, Kyono J, Kishimoto S, et al. Beneficial effect of B segregation on creep cavitation in a type 347 austenitic stainless steel [J]. Scr. Mater., 2005, 52: 675
10 Qurashi M S, Cui Y S, Wang J, et al. Corrosion resistance and passivation behavior of B-containing S31254 stainless steel in a low pH medium [J]. Int. J. Electrochem. Sci., 2019, 14: 10642
11 Wang T H, Wang J, Bai J C, et al. Effect of boron on dissolution and repairing behavior of passive film on S31254 super-austenitic stainless steel immersed in H2SO4 solution [J]. J. Iron Steel Res. Int., 2022, 29: 1012
12 Bai J G, Cui Y S, Wang J, et al. Effect of boron addition on the precipitation behavior of S31254 [J]. Metals, 2018, 8: 497
13 Li S, Ma J Y, Wang J, et al. Impact of boron addition on the hot deformation behavior and microstructure evolution of S31254 [J]. Mater. Lett., 2022, 315: 131971
14 Cai G J, Li C S. Effects of Ce on inclusions and corrosion resistance of low-nickel austenite stainless steel [J]. Mate. Corros., 2015, 66: 1445
15 Dong H Y, Hu L J, Liang W Y, et al. Effect of rare earth element Ce on corrosion resistance of 316L stainless steel [J]. Corros. Sci. Prot. Technol., 2018, 30: 489
15 (董海英, 胡丽娟, 梁婉怡 等. 稀土Ce对316L不锈钢耐腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 489)
doi: 10.11903/1002.6495.2017.288
16 Wang Q, Wang L J, Sun Y H, et al. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels [J]. J. Alloy. Compd., 2020, 815: 152418
17 Wang Q, Wang L J, Zhang W, et al. Effect of cerium on the austenitic nucleation and growth of high-Mo austenitic stainless steel [J]. Metall. Mater. Trans., 2020, 51B: 1773
18 Kim S M, Kim J S, Kim K T, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mat. Sci. Eng., 2013, 573A: 27
19 Wang J, Cui Y S, Bai J G, et al. The mechanism on the B addition to regulate phase precipitation and improve intergranular corrosion resistance in UNS S31254 superaustenitic stainless steels [J]. J. Electrochem. Soc., 2019, 166: C600
20 Chen X D, Li Y S, Zhu Y T, et al. Enhanced irradiation and corrosion resistance of 316LN stainless steel with high densities of dislocations and twins [J]. J. Nucl. Mater., 2019, 517: 234
21 Yue X Q, Zhang L, Hua Y, et al. Revealing the superior corrosion protection of the passive film on selective laser melted 316L SS in a phosphate-buffered saline solution [J]. Appl. Surf. Sci., 2020, 529: 147170
[1] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[2] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[3] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[4] 梁超雄, 梁小红, 韩培德. 新热处理工艺调控B元素分布对S31254超级奥氏体不锈钢第二相析出和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[5] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[6] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[7] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[8] 李凤铭, 侯嘉鹏, 谢光宗, 吴细毛, 王强, 张哲峰. 大变形量高强高导Al-Mg-Si合金线的腐蚀机制研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1002-1008.
[9] 包晔峰, 武竹雨, 陈哲, 郭林坡, 王子睿, 曹冲, 宋亓宁. 敏化处理对00Cr21NiMn5Mo2N节镍型双相不锈钢堆焊层耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[10] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[11] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[12] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[14] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[15] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.