Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1002-1008          DOI: 10.11902/1005.4537.2021.362
  研究报告 本期目录 | 过刊浏览 |
大变形量高强高导Al-Mg-Si合金线的腐蚀机制研究
李凤铭1,2, 侯嘉鹏2, 谢光宗3, 吴细毛4, 王强2(), 张哲峰2
1.郑州大学 河南先进技术研究院 郑州 450001
2.中国科学院金属研究所 师昌绪先进材料创新中心材料使役行为研究部 沈阳 110016
3.中国华能集团有限公司东北分公司 沈阳 110167
4.辽宁省电力有限公司电力科学研究院 沈阳 110006
Corrosion Behavior of High Strength and High Electrical Conductivity Al-Mg-Si Alloy Wires with Large Area Reduction
LI Fengming1,2, HOU Jiapeng2, XIE Guangzong3, WU Ximao4, WANG Qiang2(), ZHANG Zhefeng2
1. Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
2. Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. North-East Branch of China Huaneng Group Co. Ltd., Shenyang 110167, China
4. Electric Power Research Institute of Liaoning Electric Power Co. Ltd., Shenyang 110006, China
引用本文:

李凤铭, 侯嘉鹏, 谢光宗, 吴细毛, 王强, 张哲峰. 大变形量高强高导Al-Mg-Si合金线的腐蚀机制研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1002-1008.
Fengming LI, Jiapeng HOU, Guangzong XIE, Ximao WU, Qiang WANG, Zhefeng ZHANG. Corrosion Behavior of High Strength and High Electrical Conductivity Al-Mg-Si Alloy Wires with Large Area Reduction[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1002-1008.

全文: PDF(6242 KB)   HTML
摘要: 

采用浸泡腐蚀实验和电化学实验相结合的方法,研究了长距离架空导线用高强高导Al-Mg-Si合金线的腐蚀行为与机制。结果表明:经过20 d的浸泡腐蚀,受Al-Fe-Si相和富Si相与基体α相之间微电偶作用,腐蚀首先在Al-Fe-Si相和富Si相与基体α相界面开始,随着腐蚀的发展Al-Fe-Si相和富Si相剥落形成点蚀。统计数据表明:Al-Mg-Si合金线变形量越大,Al-Fe-Si相和富Si相平均颗粒尺寸越小,最大平均点蚀深度越小。可见,Al-Fe-Si相和富Si相尺寸是影响Al-Mg-Si合金线点蚀的关键因素。

关键词 架空导线高强高导铝合金线腐蚀析出相变形量    
Abstract

The corrosion behavior of high strength and high electrical conductivity Al-Mg-Si alloy wires used for long-distance overhead conductors was studied by means of immersion corrosion test and electrochemical tests. The results show that corrosion first started at the interface between Al-Fe-Si phase (or Si-rich phase) and α-matrix due to the micro-galvanic effect during the 20 d immersion corrosion in 3.5%NaCl solution. With the progress of corrosion process, Al-Fe-Si phase and Si-rich phase peeled off and corrosion pits formed. According to statistics, the sizes of Al-Fe-Si phase and Si-rich phase decrease gradually with the increasing area reduction of Al-Mg-Si alloy wire; accordingly, the extreme average depth of corrosion pits decreases gradually. This indicated that the size of Al-Fe-Si phase and Si-rich phase is the key factor dominating the pitting corrosion behavior of Al-Mg-Si alloy wire.

Key wordsoverhead conductor    high-strength-high electrical conductivity alloy wire    corrosion    crystalline phase    area reduction
收稿日期: 2021-12-25     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(52001313);中国博士后科学基金(2019M661151)
作者简介: 李凤铭,女,1997年生,硕士生
Pass nDiameter / mmArea reduction / %
08.120
16.06544.2
25.4355.3
34.27572.3
43.1884.7
表1  Al-Mg-Si合金线样品的直径及变形量
图1  变形量为55.3%和84.7%的动电位极化曲线
Area reduction / %EcorrV vs SCEIcorrA·cm-2RpkΩ·cm2Vcorrmm·a-1EpV vs SCE
55.3-0.865.71×10-5345.320.95-0.29
84.7-0.834.27×10-65415.380.07-0.23
表2  变形量为55.3%和84.7%的Al-Mg-Si合金线的动电位极化曲线的相关参数
图2  Al-Mg-Si合金线浸泡腐蚀形貌和EDS能谱分析
图3  Al-Mg-Si合金线腐蚀坑的截面形貌
图4  大变形量Al-Mg-Si合金线的最大平均蚀坑深度
图5  Al-Mg-Si合金线微观组织EBSD表征
图6  Al-Mg-Si合金线中块状析出相二次电子像和EDS能谱
图7  大变形量Al-Mg-Si合金线块状析出相尺寸演变规律及析出相与最大蚀坑深度间的关系
图8  单个腐蚀坑处腐蚀产物EDS能谱
图9  Al-Mg-Si合金线点蚀萌生与长大机制示意图
[1] Mao Q C. Current situation and development of overhead transmission line manufacturing industry in China [J]. Electr. Power Technol., 2009, (2): 13
[1] (毛庆传. 我国架空输电线制造业现状与发展 [J]. 电力技术, 2009, (2): 13)
[2] Liu B, Zheng Q, Dang P, et al. Development and applications of aluminum alloy in overhead lines [J]. Electr. Wire Cable, 2012, (4): 10
[2] (刘斌, 郑秋, 党朋 等. 铝合金在架空导线领域的应用及发展 [J]. 电线电缆, 2012, (4): 10)
[3] Chen Q Q, Zhao Z H, Zhu Q F, et al. Effect of different annealing temperatures on hardness of 6201 aluminum alloy [J]. Trans. Mater. Heat Treat., 2016, 37(12): 24
[3] (陈庆强, 赵志浩, 朱庆丰 等. 退火温度对6201铝合金硬度的影响 [J]. 材料热处理学报, 2016, 37(12): 24)
[4] Zheng H M, Hu X F, Cui J W, et al. Effect of Sc on microstructure and performance of Al-Mg-Si aerial cables [J]. Trans. Mater. Heat Treat., 2017, 38(9): 43
[4] (郑红梅, 胡学飞, 崔接武 等. Sc元素对Al-Mg-Si架空导线的组织及性能影响 [J]. 材料热处理学报, 2017, 38(9): 43)
[5] Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: the key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
doi: 10.1016/j.matdes.2017.06.062
[6] Lu B, Zhao W B, Yin W K, et al. The conditions of overhead lines in east china power grid and the key factors affecting the life of conductors [J]. Electr. Wire Cable, 2018, (2): 5
[6] (卢波, 赵文彬, 尹文阔 等. 华东电网架空线路状况及影响导线寿命的关键因素 [J]. 电线电缆, 2018, (2): 5)
[7] Li B, Meng X B, Wang G L, et al. Investigation and analysis on the corrosion of overhead conduction in the south coastal areas [J]. Electr. Wire Cable, 2018, (4): 6
[7] (李斌, 孟晓波, 王国利 等. 南方沿海地区架空导线腐蚀情况调研分析 [J]. 电线电缆, 2018, (4): 6)
[8] Azevedo C R F, Cescon T. Failure analysis of aluminum cable steel reinforced (ACSR) conductor of the transmission line crossing the Paraná River [J]. Eng. Failure Anal., 2002, 9: 645
doi: 10.1016/S1350-6307(02)00021-3
[9] Li Z X, Chen Q Y, Hou J P, et al. Effect of drawing deformation on microstructure and strength of Al-Mg-Si alloy wire [J]. Trans. Mater. Heat Treat., 2021, 42: 75
[9] (李周选, 陈庆吟, 侯嘉鹏 等. 拉拔变形量对Al-Mg-Si合金线微观组织和强度的影响 [J]. 材料热处理学报, 2021, 42: 75)
[10] Yue Z W, Li X G, Yan F J, et al. Corrosion analysis of overhead A CSR cable in coastal environment [J]. Electr. Wire Cable, 2015, (1): 36
[10] (岳增武, 李辛庚, 闫风洁 等. 沿海地区架空钢芯铝绞线的腐蚀 [J]. 电线电缆, 2015, (1): 36)
[11] Zhou G, Lin D Y, Han J C, et al. Failure mechanism of 10 kV aerial insulation line of overhead distribution system in coastal and typhoon environment [J]. Corros. Sci. Prot. Technol., 2019, 31: 643
[11] (周刚, 林德源, 韩纪层 等. 沿海及强台风环境下10 kV配网架空绝缘导线的失效机理分析 [J]. 腐蚀科学与防护技术, 2019, 31: 643)
[12] Zhang X, Zhao J F, Li Y W, et al. Corrosion mechanism of wires used for transmission and transformation project [J]. Corros. Prot., 2017, 38: 403
[12] (张旭, 赵景峰, 李轶文 等. 输变电用导线的腐蚀机理 [J]. 腐蚀与防护, 2017, 38: 403)
[13] Kreislova K, Jaglova M, Turek L, et al. Evaluation of corrosion of long-term exposed aluminum conductor [J]. Koroze Ochr. Mater., 2013, 57(1): 25
[14] Li C X, Li J F, Birbilis N, et al. Synergetic effect of Mg2Si and Si particles on intergranular corrosion of Al-Mg-Si alloys through multi-electrode coupling system [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 107
[14] (李朝兴, 李劲风, Birbilis N 等. Mg2Si及Si粒子在Al-Mg-Si合金晶间腐蚀中协同作用机理的多电极偶合研究 [J]. 中国腐蚀与防护学报, 2010, 30: 107)
[15] Zheng Q J, Wu J, Jiang H X, et al. Effect of micro-alloying element La on corrosion behavior of Al-Mg-Si alloys [J]. Corros. Sci., 2021, 179: 109113
doi: 10.1016/j.corsci.2020.109113
[16] Zhang J X, Shao S J, Gao A H. Effect of Mg/Si mass ratio on microstructure and properties of Al-Mg-Si aluminum alloy [J]. Light Met., 2012, (9): 56
[16] (张建新, 邵水军, 高爱华. Mg/Si质量比对Al-Mg-Si系合金组织性能的影响 [J]. 轻金属, 2012, (9): 56)
[17] Zander D, Schnatterer C, Altenbach C, et al. Microstructural impact on intergranular corrosion and the mechanical properties of industrial drawn 6056 aluminum wires [J]. Mater. Des., 2015, 83: 49
doi: 10.1016/j.matdes.2015.05.079
[18] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 18590-2001 Corrosion of metals and alloys—Evaluation of pitting corrosion[S]. Beijing: Standards Press of China, 2004
[18] (中华人民共和国国家质量监督检验检疫总局. GB/T 18590-2001 金属和合金的腐蚀 点蚀评定方法[S]. 北京: 中国标准出版社, 2004)
[19] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 36
[19] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 36)
[1] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[2] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[3] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[4] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[5] 刘静远, 臧庆安, 孙长军, 张翠清, 李晓峰. 煤气化水系统腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 27-37.
[6] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[7] 马雁, 蓝宇宁, 陈嘉威. Zr-Sn-Nb包壳管腐蚀吸氢中氢浓度测算的截面金相法[J]. 中国腐蚀与防护学报, 2024, 44(1): 261-266.
[8] 卞亚飞, 汤文明, 张洁, 毛锐锐, 缪春辉, 陈国宏. 安徽省电网接地材料Q235钢的土壤腐蚀特性及规律性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 130-140.
[9] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[10] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[11] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[12] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[13] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[14] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[15] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.