Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1547-1556     CSTR: 32134.14.1005.4537.2024.026      DOI: 10.11902/1005.4537.2024.026
  研究报告 本期目录 | 过刊浏览 |
应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究
董征1,2, 毛永祺1, 孟洲1, 陈向翔1, 付传清1,2(), 陆晨涛3
1.浙江工业大学土木工程学院 杭州 310023
2.浙江省工程结构与防灾减灾技术研究重点实验室 杭州 310023
3.浙江浙交检测技术有限公司 杭州 310030
Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution
DONG Zheng1,2, MAO Yongqi1, MENG Zhou1, CHEN Xiangxiang1, FU Chuanqing1,2(), LU Chentao3
1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
2. Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
3. Zhejiang Zhejiao Testing Technology Co., Ltd., Hangzhou 310030, China
引用本文:

董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
Zheng DONG, Yongqi MAO, Zhou MENG, Xiangxiang CHEN, Chuanqing FU, Chentao LU. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1547-1556.

全文: PDF(8550 KB)   HTML
摘要: 

本文针对应力作用下模拟混凝土孔隙液环境中钢筋钝化行为开展了研究。通过电化学测试技术(电位、线性极化电阻、循环伏安曲线、电化学阻抗谱、电化学噪声)对钢筋在持续拉应力作用下的钝化行为进行了分析;采用X射线光电子能谱技术(XPS)表征了不同应力作用下钢筋表面的钝化膜。结果表明,拉应力显著增大了钢筋钝化过程氧化还原反应的活性,且拉应力水平越大氧化还原反应的活性越高。然而随着拉应力的增大,钝化膜中Fe2+/Fe3+比值增大,钝化膜稳定性下降。由此,拉应力作用特别是较高应力水平(超过60%屈服强度)显著降低了钢筋的钝化膜电阻、噪声电阻、极化电阻,增大了其在钝化状态时的电流密度。

关键词 模拟混凝土孔隙液钢筋钝化拉应力电化学测试    
Abstract

The present study aims to investigate the passivation behavior of steel bar subjected to tensile stress in a simulated concrete pore solution (SCPS). The passivation behavior of the stressed steel was studied by electrochemical techniques including open circuit potential, linear polarization resistance, cyclic voltammetry, electrochemical impedance spectroscopy and electrochemical noise measurement. The passive film of the stressed steel was characterized by XPS. Results indicated that the applied tensile stress enhanced the redox activity in highly alkaline SCPS, where the enhancement was proportional to the level of tensile stress. Nevertheless, the increment of tensile stress led to passive film with a higher value of Fe2+/Fe3+ and therefore a poorer protectiveness. As such, tensile stress especially high stress level of tension (over 60% yield strength) significantly reduced the resistance of passive film, the noise resistance, as well as the polarization resistance, leading to a higher value of current density of the passive steel.

Key wordssimulated concrete pore solution    steel bar    passivation    tensile stress    electrochemical technique
收稿日期: 2024-01-16      32134.14.1005.4537.2024.026
ZTFLH:  TG178  
基金资助:浙江省自然科学基金(LQ22E080017);国家自然科学基金(52208294);国家自然科学基金(52378271)
通讯作者: 付传清,E-mail:chqfu@zjut.edu.cn,研究方向为混凝土结构耐久性,土木工程新材料
Corresponding author: FU Chuanqing, E-mail: chqfu@zjut.edu.cn
作者简介: 董 征,女,1994年生,博士,副研究员
图1  低碳钢金相微观形貌图
图2  钢筋试样应力-应变曲线
No.Stress / MPaTensile stress / yield strength
N0.000
T1112.0530%
T2224.1060%
T3373.51100%
T4448.21120%
表1  试件应力水平组别
图3  钢筋试件及加载装置
CompositionContent / mol·L-1
KOH0.3
NaOH0.1
Ca(OH)20.03
CaSO4·2H2O0.002
表2  模拟混凝土孔隙溶液成分表
图4  试样在受力状态下进行电化学实验
图5  不同应力状态下钢筋的开路电位随时间变化
图6  极化电阻与钝化时间关系图
图7  钝化钢筋电流密度与钝化时间关系图
图8  各组别钢筋试件浸入模拟混凝土孔隙溶液中的循环伏安曲线
图9  钝化阶段各应力工况下EIS图
图10  拟合使用的等效电路图[22]
图11  不同应力工况下钢筋钝化膜电阻和电荷转移电阻随时间的变化
图12  不同应力工况下钢筋钝化14 d后的频域图(PSD曲线)
图13  不同应力工况下的白噪声水平(W)
图14  不同应力工况下的谱噪声电阻
图15  钝化14 d后T3组钢筋钝化膜的XPS谱
图16  钝化14 d后钝化膜中Fe2+和Fe3+的比值与溅射深度的关系
1 Dong Z, Gu X L, Jin Z H, et al. Experimental and numerical investigations on the rate-limiting step for macrocell corrosion of reinforcing steel in concrete [J]. J. Mater. Civ. Eng., 2022, 34: 04021407
2 Fu C Q, Huang J, Dong Z, et al. Shear behavior of reinforced concrete beams subjected to accelerated non-uniform corrosion [J]. Eng. Struct., 2023, 286: 116081
3 Jiang C, Ding H, Gu X L, et al. Failure mode-based calculation method for bending bearing capacities of normal cross-sections of corroded reinforced concrete beams [J]. Eng. Struct., 2022, 258: 114113
4 Liu X G, Zhang W P, Gu X L, et al. Probability distribution model of stress impact factor for corrosion pits of high-strength prestressing wires [J]. Eng. Struct., 2021, 230: 111686
5 Sastri V S. Challenges in Corrosion: Costs, Causes, Consequences, and Control [M]. Hoboken: John Wiley & Sons, 2015
6 Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China [J]. npj Mater. Degrad., 2017, 1: 4
7 Andrade C, Merino P, Nóvoa X R, et al. Passivation of reinforcing steel in concrete [J]. Mater. Sci. Forum, 1995, 192-194: 891
8 Poursaee A, Hansson C M. Reinforcing steel passivation in mortar and pore solution [J]. Cem. Concr. Res., 2007, 37: 1127
9 Poursaee A. Corrosion of Steel in Concrete Structures [M]. Duxford: Elsevier, 2016
10 Bertolini L, Elsener B, Pedeferri P, et al. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair [M]. 2nd ed. Weinheim: John Wiley & Sons, 2013
11 Revert A B, Hornbostel K, De Weerdt K, et al. Macrocell corrosion in carbonated Portland and Portland-fly ash concrete - Contribution and mechanism [J]. Cem. Concr. Res., 2019, 116: 273
12 Kiani K, Shodja H M. Response of reinforced concrete structures to macrocell corrosion of reinforcements. Part I: before propagation of microcracks via an analytical approach [J]. Nucl. Eng. Des., 2011, 241: 4874
13 Liang M T, Lan J J. Reliability analysis for the existing reinforced concrete pile corrosion of bridge substructure [J]. Cem. Concr. Res., 2005, 35: 540
14 Poursaee A. Corrosion of steel bars in saturated Ca(OH)2 and concrete pore solution [J]. Concr. Res. Lett., 2010, 1: 90
15 Dong Z, Poursaee A. Corrosion behavior of coupled active and passive reinforcing steels in simulated concrete pore solution [J]. Constr. Build. Mater., 2020, 240: 117955
16 González J A, Andrade C, Alonso C, et al. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement [J]. Cem. Concr. Res., 1995, 25: 257
17 Glass G K, Buenfeld N R. Chloride-induced corrosion of steel in concrete [J]. Prog. Struct. Eng. Mater., 2000, 2: 448
18 Torbati-Sarraf H, Poursaee A. Corrosion of coupled steels with different microstructures in concrete environment [J]. Constr. Build. Mater., 2018, 167: 680
19 Angst U, Elsener B, Larsen C K, et al. Chloride induced reinforcement corrosion: rate limiting step of early pitting corrosion [J]. Electrochim. Acta, 2011, 56: 5877
20 Gu X L, Dong Z, Yuan Q, et al. Corrosion of stirrups under different relative humidity conditions in concrete exposed to chloride environment [J]. J. Mater. Civ. Eng., 2020, 32: 04019329
21 Zhang Y, Poursaee A. Passivation and corrosion behavior of carbon steel in simulated concrete pore solution under tensile and compressive stresses [J]. J. Mater. Civ. Eng., 2015, 27: 04014234
22 Dong Z, Fu C Q, Poursaee A. Galvanic corrosion study between tensile-stressed and non-stressed carbon steels in simulated concrete pore solution [J]. Metals, 2022, 12: 98
23 Feng X G, Tang Y M, Zuo Y. Influence of stress on passive behaviour of steel bars in concrete pore solution [J]. Corros. Sci., 2011, 53: 1304
24 Poursaee A. Corrosion of Ti-6Al-4V orthopaedic alloy under stress [J]. Materialia, 2019, 6: 100271
25 Ning Z Y, Zhou Q L, Liu Z H, et al. Effects of imposed stresses on high temperature corrosion behaviour of T91 [J]. Corros. Sci., 2021, 189: 109595
26 Stern M, Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc., 1957, 104: 56
27 Andrade C, González J A. Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements [J]. Mater. Corros., 1978, 29: 515
28 Dong Z, Fu C Q, Lu C T, et al. Effect of stress on the critical chloride content of steel bar in simulated concrete pore solution [J]. J. Mater. Civ. Eng., 2023, 35: 04023350
29 An P L, Liang P, Ren J M, et al. Characteristics on electrochemical noise of pitting corrosion for high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 26
29 (安朋亮, 梁 平, 任建民 等. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2018, 38: 26)
doi: 10.11902/1005.4537.2016.242
30 Freire L, Nóvoa X R, Montemor M F, et al. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials [J]. Mater. Chem. Phys., 2009, 114: 962
31 Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254: 2441
32 Jin Z Q, Xiong C S, Zhao T J, et al. Passivation and depassivation properties of Cr-Mo alloyed corrosion-resistant steel in simulated concrete pore solution [J]. Cem. Concr. Compos., 2022, 126: 104375
[1] 梁梓豪, 应宗权, 刘梅梅, 杨帅. 基于Stacking集成模型融合的钢筋混凝土锈胀开裂预测方法[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[2] 张雅妮, 王思敏, 樊冰. TC4钛合金在O2 + CO2 气氛的高温高压模拟水沉积液中表面形成的钝化膜研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[3] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[4] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[5] 彭文山, 邢少华, 钱峣, 蔺存国, 侯健, 张大磊. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[6] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[7] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[8] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[9] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[10] 商百慧, 马元泰, 孟美江, 李瑛, 娄明, 白晶. HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[11] 杨胜杰, 高燕, 高旭, 赵鹏, 吴伟, 于金山, 张俊喜. 双功能铝酸钙改性硅溶胶钢筋涂层[J]. 中国腐蚀与防护学报, 2024, 44(2): 405-412.
[12] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[13] 刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[14] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[15] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.