Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1557-1565     CSTR: 32134.14.1005.4537.2024.183      DOI: 10.11902/1005.4537.2024.183
  研究报告 本期目录 | 过刊浏览 |
时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响
魏珂正1, 蒋文龙1, 龚奕维1, 裘欣2(), 丁汉林1, 项重辰1, 王子健1
1.苏州大学沙钢钢铁学院 苏州 215137
2.苏州城市学院光学与电子信息学院 苏州 215104
Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy
WEI Kezheng1, JIANG Wenlong1, GONG Yiwei1, QIU Xin2(), DING Hanlin1, XIANG Chongchen1, WANG Zijian1
1. School of Iron and Steel, Soochow University, Suzhou 215137, China
2. School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
引用本文:

魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
Kezheng WEI, Wenlong JIANG, Yiwei GONG, Xin QIU, Hanlin DING, Chongchen XIANG, Zijian WANG. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1557-1565.

全文: PDF(13306 KB)   HTML
摘要: 

本文对锻态AZ80镁合金进行固溶处理及不同保温时间的时效处理,采用析氢法、失重法及电化学测试分析了时效态AZ80镁合金的耐蚀性能,观察了合金的显微组织和腐蚀形貌,对比研究了时效热处理工艺对于柱面织构平面内第二相形貌、尺寸及数量等特征的影响,探讨了不同特征第二相粒子对合金耐蚀性能的影响规律。结果表明:不同的时效时间可有效调控锻态AZ80镁合金中第二相的析出行为,时效处理不仅可以改善合金的耐蚀性能,还可以有效弱化镁合金腐蚀性能上的各向异性。当合金达到峰值时效时,基体内可形成致密的具有网络结构的第二相,合金表面的耐蚀性和腐蚀均匀性均得到有效提升,柱面取向表面和基面取向表面间平均腐蚀速率的差值最小。

关键词 AZ80镁合金柱面取向时效处理第二相耐蚀性    
Abstract

The corrosion resistance of the as-forged AZ80 Mg-alloy subjected to solid solution treatment, and aging treatment for different time was investigated by means of hydrogen evolution method, mass loss method and electrochemical tests etc. Meanwhile, the microstructure and phase composition of the alloy, as well as the morphology and composition of corrosion products were also characterized by OM, SEM and XRD, especially in terms of the effect of microstructure variation and second phase precipitates on the corrosion behavior of the as-aged AZ80 Mg-alloy. The results indicate that varying aging time can effectively adjust the precipitation behavior of the second phase in the forged AZ80 Mg-alloy. Aging treatment can improve not only the corrosion resistance, but also mitigates the anisotropy in the corrosion performance of the Mg-alloy. For the specimen after the peak-aging treatment, a dense second phase with a network structure can be formed in its matrix, which results in the effective improvement of the corrosion resistance and uniformity of the specimen surface. Meanwhile, the difference in average corrosion rate between the cylindrical oriented surface and the basal oriented surface is minimized.

Key wordsAZ80 Mg-alloy    prismatic plane orientation    aging treatment    second phase    corrosion resistance
收稿日期: 2024-06-14      32134.14.1005.4537.2024.183
ZTFLH:  TG174.2  
基金资助:国家自然科学基金(52174367)
通讯作者: 裘欣,E-mail: 407274368@qq.com,研究方向为高性能金属材料开发与应用
Corresponding author: QIU Xin, E-mail: 407274368@qq.com
作者简介: 魏珂正,男,2000年生,硕士生
图1  固溶态合金的EBSD显微分析
图2  经不同保温时间时效处理后合金的OM显微组织
图3  AZ80镁合金时效前后的XRD谱
图4  时效处理后合金中第二相析出的SEM
图5  不同时效工艺下DP相和CP相的尺寸变化图
图6  固溶态和时效态AZ80镁合金的硬度曲线图
图7  时效态AZ80镁合金的耐蚀性能分析
图8  不同时效处理后试样的电化学腐蚀性能分析
SampleRs / Ω·cm2Rct / Ω·cm2Ydl / Ω-1·cm2·s-1ndlRf / Ω·cm2L / HRL / Ω·cm2
0.5 h aging11.9634142.38 × 10-50.7919701939900.04
1 h aging0.3643571.52 × 10-513697882570.01
2 h aging0.3234751.76 × 10-50.8624882580700.01
4 h aging0.4425254.55 × 10-61.081566201.61.52
表1  基于Nyquist图谱和等效电路图的拟合数据
图9  不同时效工艺处理后的样品浸泡在3.5%NaCl溶液中的动电位极化曲线
SampleEcorr / VIcorr / μA·cm-2
0.5 h aging-1.5215.98
1 h aging-1.515.17
2 h aging-1.487.59
4 h aging-1.5319.73
表2  由动电位极化曲线得到的Ecorr和Icorr数值
图10  不同时效处理后的试样浸泡在3.5%NaCl溶液中12 h后的腐蚀形貌
图11  固溶态和时效态AZ80合金基面取向与柱面取向试样腐蚀性能的对比分析
1 Zhang S Z, Hu L, Ruan Y T, et al. Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature [J]. J. Magnes. Alloy., 2023, 11: 2600
2 Sun J, Du W B, Fu J J, et al. A review on magnesium alloys for application of degradable fracturing tools [J]. J. Magnes. Alloy., 2022, 10: 2649
3 Bahmani A, Arthanari S, Seon S K. Formulation of corrosion rate of magnesium alloys using microstructural parameters [J]. J. Magnes. Alloy., 2020, 8: 134
doi: 10.1016/j.jma.2019.12.001
4 Zhao P Y, Ying T, Cao F Y, et al. Designing strategy for corrosion-resistant Mg alloys based on film-free and film-covered models [J]. J. Magnes. Alloy., 2023, 11: 3120
5 Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review [J]. J. Magnes. Alloy., 2023, 11: 3609
6 Wu J L, Jin L, Dong J, et al. The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
doi: 10.1016/j.jmst.2019.10.010
7 Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
8 Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
8 (黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519)
doi: 10.11902/1005.4537.2023.185
9 Lv X, Deng K K, Wang C J, et al. Effect of SiCp size on microstructure and corrosion properties of cast AZ91 Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 135
9 (吕 鑫, 邓坤坤, 王翠菊 等. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 135)
10 Jiang Q T, Ma X M, Zhang K, et al. Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy [J]. J. Magnes. Alloy., 2015, 3: 309
11 Bland L G, Gusieva K, Scully J R. Effect of crystallographic orientation on the corrosion of magnesium: Comparison of film forming and bare crystal facets using electrochemical impedance and Raman spectroscopy [J]. Electrochim. Acta, 2017, 227: 136
12 Song G L, Mishra R, Xu Z Q. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy [J]. Electrochem. Commun., 2010, 12: 1009
13 Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
14 Wei K Z, Jia A, Ding H L, et al. The synergistic effects of texture and continuous precipitates on the corrosion resistance of AZ80 magnesium alloy [J]. Mater. Today Commun., 2024, 38: 108082
15 Xie J S, Zhang J H, Zhang Z, et al. Corrosion mechanism of Mg alloys involving elongated long-period stacking ordered phase and intragranular lamellar structure [J]. J. Mater. Sci. Technol., 2023, 151: 190
doi: 10.1016/j.jmst.2023.01.005
16 Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
17 Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
18 Andreatta F, Apachitei I, Kodentsov A A, et al. Volta potential of second phase particles in extruded AZ80 magnesium alloy [J]. Electrochim. Acta, 2006, 51: 3551
19 Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Mater. Sci. Eng., 2004, 366A: 74
20 Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D [J]. Corros. Sci., 1998, 41: 249
21 Braszczyńska-Malik K N. Discontinuous and continuous precipitation in magnesium-aluminium type alloys [J]. J. Alloy. Compd., 2009, 477: 870
22 Dubey D, Kadali K, Kancharla H, et al. Effect of precipitate characteristics on the corrosion behavior of a AZ80 magnesium alloy [J]. Met. Mater. Int., 2021, 27: 3282
23 Kim J Y, Byeon J W. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy [J]. Mater. Charact., 2021, 174: 111015
24 Kim H S, Kim W J. Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase [J]. Corros. Sci., 2013, 75: 228
25 Feliu S. Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: brief review and challenges [J]. Metals, 2020, 10: 775
26 Zhang S, Liu B C, Li M X, et al. Effect of microstructures and textures on different surfaces on corrosion behavior of an as-extruded ATZ411 magnesium alloy sheet [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1029
27 Pawar S, Slater T J A, Burnett T L, et al. Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet [J]. Acta Mater., 2017, 133: 90
[1] 陆添爱, 蒋文昊, 吴伟, 张俊喜. 基于接地材料功能需求的耐蚀铸铁表面改性研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[2] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[3] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[5] 洪孝木, 王永强, 李娜, 田凯, 杜娟. 时效处理对马氏体时效硬化不锈钢显微组织和局部腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[6] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[7] 田梦真, 王勇, 李涛, 汪川, 郭泉忠, 郭建喜. 电参数对AZ31B镁合金微弧氧化膜能耗及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[8] 巫海亮, 陈宇强, 黄亮, 顾宏宇, 孙宏博, 刘佳俊, 王乃光, 宋宇峰. 高铁散热器用3003铝合金焊接隔板的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[9] 张吉昊, 徐亚程, 贾学远, 高荣杰. B10铜合金超双疏表面的制备及其性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 909-917.
[10] 何佳璇, 张羽彤, 管旭东, 唐建华, 黄海, 赵旭辉, 唐聿明, 左禹. 铝合金微通道换热器的腐蚀防护现状与进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[11] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[12] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[13] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[14] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[15] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.