Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1323-1331     CSTR: 32134.14.1005.4537.2023.339      DOI: 10.11902/1005.4537.2023.339
  研究报告 本期目录 | 过刊浏览 |
苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究
程学雨1, 叶桓1, 郭程皓1, 卢立新1,2(), 李伟哲3
1 江南大学机械工程学院 无锡 214122
2 江苏省食品先进制造装备技术重点实验室 无锡 214122
3 沈阳防锈包装材料有限责任公司 沈阳 110033
Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film
CHENG Xueyu1, YE Huan1, GUO Chenghao1, LU Lixin1,2(), LI Weizhe3
1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2 Key Laboratory of Advanced Manufacturing Equipment Technology for Foodstuffs in Jiangsu Province, Wuxi 214122, China
3 Shenyang Rustproof Packaging Material Co., Ltd., Shenyang 110033, China
引用本文:

程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
Xueyu CHENG, Huan YE, Chenghao GUO, Lixin LU, Weizhe LI. Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1323-1331.

全文: PDF(7816 KB)   HTML
摘要: 

使用分子动力学模拟的方法,从分子水平研究了不同温度下苯骈三氮唑与苯甲酸钠在低密度聚乙烯中的扩散行为,探究了缓蚀剂的扩散机理。结果表明,苯骈三氮唑的扩散速率较苯甲酸钠小,且均随温度的升高而增大;多组分扩散时苯骈三氮唑、苯甲酸钠的扩散速率减缓并随苯甲酸钠含量的增加而减小。缓蚀剂分子间的相互作用及缓蚀剂分子与扩散体系间的相互作用是影响其扩散的重要原因,苯甲酸钠对苯骈三氮唑的扩散可能存在抑制作用。缓蚀剂扩散系数的实验值与模拟值变化趋势一致,在数值上相差一个数量级。可为缓蚀剂的释放调控及复配提供技术支持。

关键词 苯骈三氮唑苯甲酸钠气相缓蚀剂分子动力学模拟扩散    
Abstract

The diffusion behavior of benzotriazole and sodium benzoate in low-density polyethylene of volatile corrosion inhibitor film was studied via a constant temperature and humidity chamber at different temperature, as well as molecular dynamics simulations at the molecular level, comparatively. The effect of the shape and size of the corrosion inhibitor molecules, temperature, free volume of the diffusion system, self-diffusion in low density polyethylene, and the interaction energy between the corrosion inhibitor molecules, and the low-density polyethylene on the diffusion rate of the corrosion inhibitors was analyzed. The results show that the diffusion rate of benzotriazole and sodium benzoate in the low-density polyethylene increased with increasing temperature, moreover, the diffusion rate of the single benzotriazole was less than that of sodium benzoate. When co-existence of benzotriazole and sodium benzoate in the polyethylene, their diffusion rates lowered in contrast to that the polyethylene containing only one inhibitor either benzotriazole or sodium benzoate, and which decreased with the increasing sodium benzoate content. The interaction between the corrosion inhibitor molecules and the interaction between the corrosion inhibitor and the diffusion system were important factors affecting the diffusion of the corrosion inhibitor, and the diffusion of sodium benzoate may have an inhibitory effect on the diffusion of benzotriazole. The measured and simulated diffusion coefficients of benzotriazole in low-density polyethylene show the same variation trend, but their values differ by one order of magnitude. Even so, the result can still provide a technical reference for release control and formulation of corrosion inhibitors.

Key wordsbenzotriazole    sodium benzoate    volatile corrosion inhibitor    molecular dynamics simulation    diffusion
收稿日期: 2023-10-31      32134.14.1005.4537.2023.339
ZTFLH:  TG174  
通讯作者: 卢立新,E-mail:lulx@jiangnan.edu.cn,研究方向为包装技术与安全
Corresponding author: LU Lixin, E-mail: lulx@jiangnan.edu.cn
作者简介: 程学雨,男,1995年生,博士生
图1  分子动力学模拟流程
ModelTemperature / KSBBTALDPE
BTA-LDPE298021
313
SB-LDPE201
328
BTA-SB-LDPE313221
621
1021
表1  扩散晶胞模型参数
图2  313 K下不同扩散体系的晶胞结构
图3  不同温度下BTA/SB在LDPE中扩散的MSD
图4  313 K下BTA/SB不同配比的MSD
ModelTemperature / KDiffusion coefficient / cm2·s-1
BTASB
BTA-LDPE2981.96 × 10-7-
3132.22 × 10-7-
3282.43 × 10-7-
SB-LDPE298-3.16 × 10-7
313-3.94 × 10-7
328-6.51 × 10-7
SB-BTA-LDPE = 2∶2∶13139.03 × 10-81.62 × 10-7
SB-BTA-LDPE = 6∶2∶14.75 × 10-87.07 × 10-8
SB-BTA-LDPE = 10∶2∶12.57 × 10-83.38 × 10-8
表2  不同扩散体系中BTA和SB分子的扩散系数
图5  不同扩散体系中BTA的释放量
ModelTemperature / KDiffusion coefficient / cm2·s-1
BTA-LDPE2981.37 × 10-8
3132.89 × 10-8
3284.02 × 10-8
SB-BTA-LDPE = 2∶2∶13139.12 × 10-9
SB-BTA-LDPE = 6∶2∶18.36 × 10-9
SB-BTA-LDPE = 10∶2∶17.49 × 10-9
表3  BTA扩散系数实验值
图6  BTA与SB分子的回转半径
图7  不同扩散体系的自由体积分布
ModelTemperature / KFFV / %
BTA-LDPE29815.31
31319.07
32819.56
SB-LDPE29816.47
31319.35
32819.98
SB-BTA-LDPE = 2∶2∶131319.07
SB-BTA-LDPE = 6∶2∶116.64
SB-BTA-LDPE = 10∶2∶112.54
表4  不同扩散体系的自由体积分数
ModelTemperature / KInteraction energy / J·mol-1
BTASB
BTA-LDPE298-166,602.80-
313-153,793.64-
328-153,668.06-
SB-LDPE298--150,109.96
313--144,082.12
328--136,589.18
SB-BTA-LDPE = 2∶2∶1313-352,963.52-354,010.02
SB-BTA-LDPE = 6∶2∶1-429,148.72-744,480.10
SB-BTA-LDPE = 10∶2∶1-520,570.96-1,107,364.44
表5  扩散体系中VCI分子与扩散体系的相互作用能
图8  不同扩散体系中LDPE自扩散的MSD
ModelTemperature / KSelf-diffusion coefficient / cm2·s-1
BTA-LDPE2986.24 × 10-8
3139.37 × 10-8
3281.08 × 10-7
SB- LDPE2981.13 × 10-7
3131.34 × 10-7
3281.39 × 10-7
SB-BTA-PE = 2∶2∶13136.70 × 10-8
SB-BTA-PE = 6∶2∶15.22 × 10-8
SB-BTA-PE = 10∶2∶13.81 × 10-8
表6  不同扩散体系中LDPE的自扩散系数
图9  不同扩散体系中BTA/SB分子的扩散轨迹
1 Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: a short view [J]. Chem. Eng. Commun., 2016, 203: 1145
2 Zhang D Q. Key issues regarding development of volatile corrosion inhibitors and their application [J]. J. Shanghai Univ. Electr. Power, 2019, 35: 1
2 张大全. 气相缓蚀剂的研究开发及应用中若干问题的探讨 [J]. 上海电力学院学报, 2019, 35: 1
3 Valdez B, Schorr M, Cheng N, et al. Technological applications of volatile corrosion inhibitors [J]. Corros. Rev., 2018, 36: 227
4 Basitnezhad F, Ebadi-Dehaghani H. Controlled release of novel volatile corrosion inhibitor (VCI) nanoparticles incorporated in low density polyethylene (LDPE) films for steel coverings: correlation of experimental results with molecular dynamics simulation [J]. J. Macromol. Sci., 2021, 60B: 416
5 Gangopadhyay S, Mahanwar P A. Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review [J]. J. Coat. Technol. Res., 2018, 15: 789
6 Dudler V, Muiños C. Diffusion of benzotriazoles in polypropylene: influence of polymer morphology and stabilizer structure [J]. Adv. Chem., 1996, 249: 441
7 Ebadi-Dehaghani H. Diffusion of 1,2,3-benzotriazole as a volatile corrosion inhibitor through common polymer films using the molecular dynamics simulation method [J]. J. Macromol. Sci., 2016, 55B: 310
8 Yan L Y, Li W Q, Zhan T R. Research progress of volatile corrosion inhibitor [J]. Shandong Chem. Ind., 2023, 52(12): 66
8 闫丽艳, 李文强, 詹天荣. 气相缓蚀剂及其研究进展 [J]. 山东化工, 2023, 52(12): 66
9 Wang Y H, Wang W H, Zhang Z Q, et al. Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation [J]. Eur. Polym. J., 2016, 75: 36
10 Zhang J, Yu W Z, Yu L J, et al. Molecular dynamics simulation of corrosive particle diffusion in benzimidazole inhibitor films [J]. Corros. Sci., 2011, 53: 1331
11 Chen X, Lu L X, Qiu X L, et al. Controlled release mechanism of complex bio-polymeric emulsifiers made microspheres embedded in sodium alginate based films [J]. Food Control, 2017, 73: 1275
12 Hatzigrigoriou N B, Papaspyrides C D, Joly C, et al. Effect of migrant size on diffusion in dry and hydrated polyamide 6 [J]. J. Agric. Food Chem., 2010, 58: 8667
13 Kong L Z, Dong K H, Tang Y H, et al. Molecular dynamics simulation of the influence of PEG-TDI aging degradation on diffusibility and compatibility of NG and BTTN [J]. Propell. Explos. Pyrot., 2021, 46: 1436
14 Kruse J, Kanzow J, Rätzke K, et al. Free volume in polyimides: positron annihilation experiments and molecular modeling [J]. Macromolecules, 2005, 38: 9638
15 Duffour E, Malfreyt P. Structure and thermodynamic properties from molecular dynamics simulations of the polyethylene crystal [J]. Polymer, 2002, 43: 6341
16 Sun L N, Lu L X, Pan L, et al. Development of active low-density polyethylene (LDPE) antioxidant packaging films: controlled release effect of modified mesoporous silicas [J]. Food Packag. Shelf Life, 2021, 27: 100616
17 Farahani M, Jahani Y, Kakanejadifard A, et al. Self-assembly behavior of temperature sensitive additive in polypropylene matrix: molecular dynamics simulations [J]. Mater. Today Commun., 2022, 31: 103529
18 Raptis T E, Raptis V E, Samios J. New effective method for quantitative analysis of diffusion jumps, applied in molecular dynamics simulations of small molecules dispersed in short chain systems [J]. J. Phys. Chem., 2007, 111B: 13683
[1] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[2] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[3] 李佳恒, 钱伟, 朱晶晶, 蔡杰, 花银群. 激光冲击强化对镍基单晶高温合金微观组织和抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[4] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[5] 周浩, 尤世界, 王胜利. 铜质文物在CO2 环境中的腐蚀行为及缓蚀剂研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[6] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[7] 姚婵, 陈健, 明洪亮, 王俭秋. 管线钢氢渗透行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[8] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[9] 刘永强, 刘光明, 范文学, 唐荣茂, 甘鸿禹, 师超. 苯甲酸钠在酸性Zn-Ni镀液中对Zn阳极溶解行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
[10] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[11] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[12] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[13] 石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[14] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[15] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.