Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (1): 39-50    DOI: 10.11902/1005.4537.2021.034
  研究报告 本期目录 | 过刊浏览 |
深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响
高浩东1, 崔宇2, 刘莉1, 孟凡帝1(), 刘叡2, 郑宏鹏1, 王福会1
1.沈阳材料科学国家实验室东北大学联合研究分部 沈阳 110819
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating
GAO Haodong1, CUI Yu2, LIU Li1, MENG Fandi1(), LIU Rui2, ZHENG Hongpeng1, WANG Fuhui1
1.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(14269 KB)   HTML
摘要: 

采用吸水率测试EIS、附着力测试SEM、FT-IR等方法,对比研究常压-静态环境 (0.1 MPa-0 m/s)、流体流动环境 (0.1 MPa-4 m/s)、高静水压力环境 (10 MPa-0 m/s) 和压力-流速耦合环境 (10 MPa-4 m/s) 下环氧玻璃鳞片涂层的失效行为和机制。实验结果表明,耦合环境下,填料与涂层基体间的界面结合被显著削弱,涂层的物理结构发生严重破环,腐蚀介质在涂层中加速扩散,并在涂层缺陷和涂层/金属界面处大量聚集,导致涂层吸水率大幅上升,力学性能显著下降,附着力迅速丧失,发生大面积鼓泡,快速失效。

关键词 压力-流速耦合环境环氧玻璃鳞片涂层扩散EIS界面物理结构鼓泡失效    
Abstract

The failure behavior of epoxy glass flake coating in artificial seawater of various states, namely atmospheric static (0.1 MPa-0 m/s), atmospheric flowing (0.1 MPa-4 m/s), high hydrostatic pressure (10 MPa-0 m/s) and pressured-flowing (10 MPa-4 m/s) was studied by means of water absorption test, EIS, adhesion test, SEM, FT-IR, etc. The results indicated that, under the action of pressured-flowing artificial seawater, the interfacial bonding strength between pigments with the coating matrix may be significantly weakened, the structure of the coating is severely damaged, which promotes the diffusion of corrosive media in the coating, and in consequence, a large amount of water accumulates in coating defects and the interface of coating/metal, which result in significant increase in the water absorption rate and severe decrease in mechanical properties, as well as in rapid loss of coating adhesion and bubbling of the coating, as a result, the coating fails quickly. Finally, the failure mechanism of organic coatings induced by pressured-flowing artificial seawater was also discussed.

Key wordspressure-flow velocity coupling environment    epoxy glass flake coating    diffusion    EIS    interface    physical structure    bubbling    failure
收稿日期: 2021-02-26     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2017YFB0702303)
通讯作者: 孟凡帝     E-mail: fandimeng@mail.neu.edu.cn
Corresponding author: MENG Fandi     E-mail: fandimeng@mail.neu.edu.cn
作者简介: 高浩东,男,1995年生,硕士生

引用本文:

高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
Haodong GAO, Yu CUI, Li LIU, Fandi MENG, Rui LIU, Hongpeng ZHENG, Fuhui WANG. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating. Journal of Chinese Society for Corrosion and protection, 2022, 42(1): 39-50.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.034      或      https://www.jcscp.org/CN/Y2022/V42/I1/39

图1  涂层/金属样品的示意图
图2  实验设备示意图
图3  4种环境中环氧玻璃涂层吸水率随浸泡时间的变化曲线
图4  4种环境中环氧玻璃鳞片涂层吸水动力学曲线拟合结果
图5  常压静态环境下涂层/金属样品的电化学阻抗谱
图6  涂层/金属样品电化学阻抗谱等效电路模型
图7  单流体环境中和高静水压力环境涂层/金属样品的电化学阻抗谱图
图8  压力-流速耦合环境下涂层/金属样品的电化学阻抗谱
图9  4种环境下样品低频阻抗模值随时间的变化
图10  4种环境下涂层电阻和电荷转移电阻随时间的变化
图11  干态及4种环境下浸泡120 h后样品的宏观形貌
图12  4种环境下浸泡24和120 h后涂层的附着力
图13  4种环境中浸泡120 h以后涂层表面的SEM像
图14  10 MPa-4 m/s环境下浸泡120 h后涂层表面的EDS分析
图15  干态及4种环境下服役120 h后涂层的红外光谱
图16  干态及4种环境下浸泡120 h后涂层的力学性能
图17  4种环境下浸泡120 h以后涂层拉伸断口微观形貌
图18  10MPa-4 m/s环境下涂层失效示意图
1 Feng S Z, Li F Q, Li S J. An Introduction to Marine Science [M]. Beijing: Higher Education Press, 1999
1 冯士筰, 李凤岐, 李少菁. 海洋科学导论 [M]. 北京: 高等教育出版社, 1999
2 Gao Y B, Li H Q, Chai Y P, et al. The development of deep ocean high technology [J]. Ocean Technol., 2010, 29(3): 119
2 高艳波, 李慧青, 柴玉萍等. 深海高技术发展现状及趋势 [J]. 海洋技术, 2010, 29(3): 119
3 Hou B R. The Theory and Application of Marine Corrosion Environment [M]. Beijing: Science Press, 1999
3 侯保荣. 海洋腐蚀环境理论及其应用 [M]. 北京: 科学出版社, 1999
4 Sun H J, Qin M, Li L. Performance of Al-Zn-In-Mg-Ti sacrificial anode in simulated low dissolved oxygen deep water environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 508
4 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 508
5 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of M-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
5 栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
6 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
6 师超, 邵亚薇, 熊义等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
7 Corfias C, Pébère N, Lacabanne C. Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method: Influence of the polymer binder [J]. Corros. Sci., 2000, 42: 1337
8 Zhang J T. Electrochemical investigation on water transport behavior of organic coatings and degradation mechanism of coated-metals [J]. Hangzhou: Zhejiang University, 2005
8 张金涛. 有机涂层中水传输与涂层金属失效机制的电化学研究 [D]. 杭州: 浙江大学, 2005
9 Cao J Y, Wang Z Q, Li L, et al. Failure mechanism of organic coating with modified graphene under simulated deep-sea alternating hydrostatic pressure [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 139
9 曹京宜, 王智峤, 李亮等. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制 [J]. 中国腐蚀与防护学报, 2020, 40: 139
10 Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behavior of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
11 Liu J, Li X B, Wang J, et al. Studies of impedance models and water transport behaviours of epoxy coating at hydrostatic pressure of seawater [J]. Prog. Org. Coat., 2013, 76: 1075
12 Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
13 Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
14 Tian W L, Liu L, Meng F D, et al. The failure behavior of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
15 Wang Y C, Bierwagen G P. A new acceleration factor for the testing of corrosion protective coatings: Flow-induced coating degradation [J]. J. Coat. Technol. Res., 2009, 6: 429
16 Wei Y H, Zhang L X, Ke W. Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion [J]. Corros. Sci., 2006, 48: 1449
17 Zhou Q X, Wang Y C, Bierwagen G P. Flow accelerated degradation of organic clear coat: The effect of fluid shear [J]. Electrochim. Acta, 2014, 142: 25
18 Ruzic V, Veidt M, Nešić S. Protective iron carbonate films-Part 1: Mechanical removal in single-phase aqueous flow [J]. Corrosion, 2006, 62: 419
19 van der Wel G K, Adan O C G. Moisture in organic coatings-a review [J]. Prog. Org. Coat., 1999, 37: 1
20 Pitarresi G, Scafidi M, Alessi S, et al. Absorption kinetics and swelling stresses in hydrothermally aged epoxies investigated by photoelastic image analysis [J]. Polym. Degrad. Stabil., 2015, 111: 55
21 Jackson M, Kaushik M, Nazarenko S, et al. Effect of free volume hole-size on fluid ingress of glassy epoxy networks [J]. Polymer, 2011, 52: 4528
22 Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
23 Cao C N, Zhang J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
23 曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002
24 Shi C, Shao Y W, Wang Y Q, et al. Influence of submicro-sheet zinc phosphate modified by urea-formaldehyde on the corrosion protection of epoxy coating [J]. Surf. Interfaces, 2019, 18: 100403
25 Zhang Y J, Shao Y W, Liu X L, et al. A study on corrosion protection of different polyaniline coatings for mild steel [J]. Prog. Org. Coat., 2017, 111: 240
26 Liang P P, Bao H M, Yang J F, et al. Preparation of porous graphene oxide-poly (urea-formaldehyde) hybrid monolith for trypsin immobilization and efficient proteolysis [J]. Carbon, 2016, 97: 25
27 Zheng H P, Shao Y W, Wang Y Q, et al. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly (urea-formaldehyde) composites [J]. Corros. Sci., 2017, 123: 267
28 Nogueira P, Ramírez C, Torres A, et al. Effect of water sorption on the structure and mechanical properties of an epoxy resin system [J]. J. Appl. Polym. Sci., 2001, 80: 71
29 Gabe D R, Wilcox G D, Gonzalez-Garcia J, et al. The rotating cylinder electrode: its continued development and application [J]. J. Appl. Electrochem., 1998, 28: 759
[1] 徐桂芳, 李园, 雷玉成, 朱强. 相对流速对高氮奥氏体不锈钢在液态铅铋共晶合金中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[2] 陈宣东, 章青, 顾鑫, 李星. 基于概率分析的钢筋混凝土结构服役寿命预测研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 673-678.
[3] 马士德, 刘欣, 王在东, 任亚东, 邰余, 韩文, 段继周. 普碳钢表面锌防护层在青岛中港海水中耐蚀与防污损性能对比研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 585-594.
[4] 吕祥鸿, 马晓凤, 胡兆伟, 李媛媛, 王晨. T/S-52K直缝钢在不同Cl-浓度下的腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[5] 王佳, 刘晓勇, 高灵清, 查小琴, 罗先甫, 张文利, 张恒坤. α型Ti70合金的吸氢行为研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[6] 石践, 胡学文, 何博, 杨峥, 郭锐, 汪飞. Q345NS钢焊接接头耐硫酸腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[7] 孙伟松, 于思荣, 高嵩, 姚新宽, 徐海亮, 钱冰, 王冰姿. 水分子在石墨烯增强环氧树脂防腐涂层扩散的分子动力学模拟[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
[8] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[9] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[10] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[11] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[12] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[13] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[14] 朱泽洁,张勤号,刘盼,张鉴清,曹发和. 微型电化学传感器在界面微区pH值监测中的应用[J]. 中国腐蚀与防护学报, 2019, 39(5): 367-374.
[15] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.