|
|
水含量对超临界CO2 输送管道腐蚀的影响 |
胡丽华1, 衣华磊1, 杨维健2, 孙冲2, 孙建波2( ) |
1.中海油研究总院有限责任公司 北京 100028 2.中国石油大学(华东)材料科学与工程学院 青岛 266580 |
|
Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids |
HU Lihua1, YI Hualei1, YANG Weijian2, SUN Chong2, SUN Jianbo2( ) |
1. CNOOC Research Institute Co., Ltd., Beijing 100028, China 2. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China |
引用本文:
胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
Lihua HU,
Hualei YI,
Weijian YANG,
Chong SUN,
Jianbo SUN.
Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 576-584.
1 |
Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review [J]. Int. Mater. Rev., 2017, 62: 1
doi: 10.1080/09506608.2016.1176306
|
2 |
Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 379
|
2 |
孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
|
3 |
Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
|
3 |
梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
|
4 |
Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
|
4 |
原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15
|
5 |
Lu S J, Zhang J J, Yang F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. J. Nanjing Univ. (Nat. Sci.), 2022, 58: 944
|
5 |
陆诗建, 张娟娟, 杨菲 等. CO2管道输送技术进展与未来发展浅析 [J]. 南京大学学报(自然科学), 2022, 58: 944
|
6 |
Choi Y S, Nešic S. Effect of impurities on the corrosion behavior of carbon steel in supercritical CO2-water environments [A]. Corrosion 2010 [C]. San Antonio, 2010: 10196
|
7 |
Cui G, Yang Z Q, Liu J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment [J]. Int. J. Greenh. Gas Control, 2019, 90: 102814
doi: 10.1016/j.ijggc.2019.102814
|
8 |
Eldevik F, Graver B, Torbergsen L E, et al. Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines [J]. Energy Procedia, 2009, 1: 1579
doi: 10.1016/j.egypro.2009.01.207
|
9 |
Lee J Y, Keener T C, Yang Y J. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants [J]. J. Air Waste Manag. Assoc., 2009, 59: 725
doi: 10.3155/1047-3289.59.6.725
|
10 |
Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
doi: 10.1016/j.corsci.2018.03.041
|
11 |
Sun C, Wang Y, Sun J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. J. Supercrit. Fluids, 2016, 116: 70
doi: 10.1016/j.supflu.2016.05.006
|
12 |
Brown J, Graver B, Gulbrandsen E, et al. Update of DNV recommended practice RP-J202 with focus on CO2 corrosion with impurities [J]. Energy Procedia, 2014, 63: 2432
doi: 10.1016/j.egypro.2014.11.265
|
13 |
Hua Y, Barker R, Neville A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 [J]. Int. J. Greenh. Gas Control, 2015, 37: 412
doi: 10.1016/j.ijggc.2015.03.031
|
14 |
de Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenh. Gas Control, 2008, 2: 478
doi: 10.1016/j.ijggc.2008.04.006
|
15 |
Buit L, Ahmad M, Mallon W, et al. CO2 EuroPipe study of the occurrence of free water in dense phase CO2 transport [J]. Energy Procedia, 2011, 4: 3056
doi: 10.1016/j.egypro.2011.02.217
|
16 |
Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport [J]. J. Supercrit. Fluids, 2012, 67: 14
doi: 10.1016/j.supflu.2012.03.006
|
17 |
McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: has half the story been neglected? [J]. Energy Procedia, 2009, 1: 3415
doi: 10.1016/j.egypro.2009.02.131
|
18 |
Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
|
18 |
赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
|
19 |
Sun C, Liu J X, Sun J B, et al. Corrosion behaviors of X65 steel in gaseous CO2 environment containing impurities [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2022, 46(3): 129
|
19 |
孙 冲, 刘建新, 孙建波 等. 含杂质气态CO2环境中X65钢腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2022, 46(3): 129
|
20 |
Brion D. ETUDE par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau [J]. Appl. Surf. Sci., 1980, 5: 133
doi: 10.1016/0378-5963(80)90148-8
|
21 |
Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
doi: 10.1016/j.supflu.2011.06.007
|
22 |
Siriwardane R V, Cook J M. Interactions of SO2 with sodium deposited on silica [J]. J. Colloid Interface Sci., 1985, 108: 414
doi: 10.1016/0021-9797(85)90280-2
|
23 |
Asami K, Hashimoto K. The X-ray photo-electron spectra of several oxides of iron and chromium [J]. Corros. Sci., 1977, 17: 559
doi: 10.1016/S0010-938X(77)80002-4
|
24 |
McIntyre N S, Zetaruk D G, Owen D. X-Ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy [J]. J. Electrochem. Soc., 1979, 126: 750
doi: 10.1149/1.2129132
|
25 |
Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 1990, 2: 186
doi: 10.1021/cm00008a021
|
26 |
Allen G C, Curtis M T, Hooper A J, et al. X-Ray photoelectron spectroscopy of iron–oxygen systems [J]. J. Chem. Soc., Dalton Trans., 1974, (14): 1525
|
27 |
de Donato P, Mustin C, Benoit R, et al. Spatial distribution of iron and sulphur species on the surface of pyrite [J]. Appl. Surf. Sci., 1993, 68: 81
doi: 10.1016/0169-4332(93)90217-Y
|
28 |
Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure [J]. Phys. Scr., 1970, 1: 286
doi: 10.1088/0031-8949/1/5-6/020
|
29 |
Kelemen S R, George G N, Gorbaty M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach [J]. Fuel, 1990, 69: 939
doi: 10.1016/0016-2361(90)90001-7
|
30 |
Xiang Y, Wang Z, Li Z, et al. Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities [J]. Corros. Eng., Sci. Technol., 2013, 48: 395
doi: 10.1179/1743278213Y.0000000099
|
31 |
Yan K, Xiang Y, Chen X L. Investigation on corrosion characteristics of pipeline in CO2 ocean storage system [J]. Corros. Sci. Prot. Technol., 2019, 31: 672
|
31 |
颜 开, 向 勇, 陈晓玲. CO2海洋封存系统管道腐蚀特性研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 672
|
32 |
Dugstad A, Halseid M, Morland B. Testing of CO2 specifications with respect to corrosion and bulk phase reactions [J]. Energy Procedia, 2014, 63: 2547
doi: 10.1016/j.egypro.2014.11.277
|
33 |
Dugstad A, Halseid M, Morland B. Experimental techniques used for corrosion testing in dense phase CO2 with flue gas impurities [A]. Corrosion 2014 [C]. San Antonio, 2014: 4383
|
34 |
Sun C, Sun J B, Wang Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 193
doi: 10.1016/j.corsci.2016.02.032
|
35 |
Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
doi: 10.1016/j.corsci.2022.110729
|
36 |
Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines [J]. Energy Procedia, 2013, 37: 2877
doi: 10.1016/j.egypro.2013.06.173
|
37 |
Xu M H, Zhang Q, Yang X X, et al. Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2 [J]. J. Supercrit. Fluids, 2016, 107: 286
doi: 10.1016/j.supflu.2015.09.017
|
38 |
Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|