Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (3): 576-584     CSTR: 32134.14.1005.4537.2023.227      DOI: 10.11902/1005.4537.2023.227
  研究报告 本期目录 | 过刊浏览 |
水含量对超临界CO2 输送管道腐蚀的影响
胡丽华1, 衣华磊1, 杨维健2, 孙冲2, 孙建波2()
1.中海油研究总院有限责任公司 北京 100028
2.中国石油大学(华东)材料科学与工程学院 青岛 266580
Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids
HU Lihua1, YI Hualei1, YANG Weijian2, SUN Chong2, SUN Jianbo2()
1. CNOOC Research Institute Co., Ltd., Beijing 100028, China
2. School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

胡丽华, 衣华磊, 杨维健, 孙冲, 孙建波. 水含量对超临界CO2 输送管道腐蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
Lihua HU, Hualei YI, Weijian YANG, Chong SUN, Jianbo SUN. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 576-584.

全文: PDF(9094 KB)   HTML
摘要: 

通过模拟实验和表面分析技术等方法,对比研究有无杂质的超临界CO2输送环境中水含量对X65管线钢腐蚀行为的影响,并探讨不同水含量环境中杂质对X65钢腐蚀的影响机理。结果表明:在超临界CO2-H2O环境中,即使水含量达到饱和溶解度0.4114%,X65钢也仅发生轻微腐蚀,腐蚀速率为0.0013 mm/a。在O2、H2S、SO2和NO2杂质共存的超临界CO2-H2O环境中,水含量由0.002%增加至0.4114%,X65钢腐蚀速率由0.0181 mm/a增加至0.2901 mm/a。杂质与杂质间交互作用显著促进腐蚀性液相形成,进而加剧X65钢的腐蚀。在低含水量环境中,X65钢腐蚀过程由杂质间反应产物控制;而在高含水量环境中,杂质和杂质间反应产物共同控制X65钢的腐蚀过程。

关键词 X65管线钢超临界CO2水含量杂质腐蚀    
Abstract

CO2 induced pipeline corrosion is one of main concerns for the safe implementation and large-scale application of Carbon Capture, Utilization and Storage (CCUS) technology. Reasonably limiting the water content in supercritical CO2 transport environments containing multiple impurities is crucial for the corrosion control of the pipeline. Herein, the effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2 transport environments with/without impurities of O2, H2S, SO2 and NO2 was investigated by means of simulated corrosion test with high-temperature and high-pressured autoclave, and surface analysis technology. Concurrently, the influence mechanism of impurities on the corrosion of the steel in supercritical CO2 transport environments with different water contents was discussed. The results show that X65 steel only undergoes slight corrosion in supercritical CO2-H2O environment even if the water content reaches a saturated solubility of 0.4114%, and the corrosion rate is 0.0013 mm/a. However, when O2, H2S, SO2 and NO2 coexist in supercritical CO2-H2O environment, the corrosion rate of X65 steel increases from 0.0181 mm/a to 0.2901 mm/a as the water content varies from 0.002% to 0.4114%. The impurities and their interactions significantly promote the formation of corrosive aqueous phase, therefore exacerbating the corrosion of X65 steel. The corrosion process of X65 steel in the environment with low water content is controlled by the products of impurity reactions, whereas the impurities and the products of impurity reactions jointly dominate the corrosion process of the steel in the environment with high water content.

Key wordsX65 pipeline steel    supercritical CO2    water content    impurity    corrosion
收稿日期: 2023-07-18      32134.14.1005.4537.2023.227
ZTFLH:  TG178  
基金资助:中海油“十四五”重大科研项目(KJGG-2022-12-CCUS-0103)
通讯作者: 孙建波,E-mail:sunjianbo@upc.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: Sun Jianbo, E-mail: sunjianbo@upc.edu.cn
作者简介: 胡丽华,女,1980年生,博士,高级工程师
图1  腐蚀模拟实验装置示意图
TestPressure / MPaTemperature / ºCO2H2SSO2NO2H2O
1105000000.01, 0.05, 0.1, 0.2, 0.3, 0.4114
210500.020.020.020.020.002, 0.01, 0.05, 0.1, 0.2, 0.4114
表1  腐蚀模拟实验条件 (volume fraction / %)
图2  X65钢的腐蚀速率随水含量的变化规律
图3  在不同含水量的超临界CO2-H2O环境中腐蚀72 h后X65钢的宏观和SEM表面形貌
图4  在不同含水量的超临界CO2-H2O-杂质环境中腐蚀72 h后X65钢的宏观和SEM表面形貌
Water content / %PositionFeOS
0.002A55.941.32.9
0.01B46.452.61.0
0.05C53.845.40.8
0.1D34.260.25.6
0.2E43.943.113.0
0.4114F23.063.813.2
表2  图4中A~F标记区域腐蚀产物EDS半定量分析结果
图5  在不同含水量的超临界CO2-H2O-杂质环境中腐蚀72 h后X65钢的截面背散射电子像及元素分布
图6  在不同含水量的超临界CO2-H2O-杂质环境中腐蚀72 h后X65钢表面腐蚀膜的XRD图谱
图7  在不同含水量的超临界CO2-H2O-杂质环境中腐蚀72 h后X65钢腐蚀膜中不同元素的高分辨XPS图谱(参照C 1s峰结合能284.8 eV对图谱进行荷电校正)
Element0.2% H2O0.1% H2O0.05% H2O

Binding energy

eV

Fitted species

Binding energy

eV

Fitted species

Binding energy

eV

Fitted species
Fe 2p710.8FeSO4[20]710.8FeSO4[20]711.3FeSO4[20]
712.2FeSO4[21]712.2FeSO4[21]713.6FeSO4[22]
724.5FeOOH[23]724.5FeOOH[23]725.3FeOOH[23]
O 1s530.1FeOOH[24]529.7FeOOH[25]530.2FeOOH[23]
531.5FeOOH[20]531.7FeOOH[25]531.8FeOOH[26]
532.2FeSO4[21]533.7SO42-[27]532.3FeSO4[28]
S 2p163.7S[29]164.0S[30]--
167.1SO32-[21]168.7FeSO4[28]168.7FeSO4[28]
168.6FeSO4[21]----
表3  X65钢腐蚀膜XPS图谱中Fe 2p,O 1s和 S 2p的结合能和化合物分析结果
1 Barker R, Hua Y, Neville A. Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS)-a review [J]. Int. Mater. Rev., 2017, 62: 1
doi: 10.1080/09506608.2016.1176306
2 Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 379
2 孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
3 Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 613
3 梁志远, 徐一鸣, 王 硕 等. 高等级合金CO2环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
4 Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
4 原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15
5 Lu S J, Zhang J J, Yang F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. J. Nanjing Univ. (Nat. Sci.), 2022, 58: 944
5 陆诗建, 张娟娟, 杨菲 等. CO2管道输送技术进展与未来发展浅析 [J]. 南京大学学报(自然科学), 2022, 58: 944
6 Choi Y S, Nešic S. Effect of impurities on the corrosion behavior of carbon steel in supercritical CO2-water environments [A]. Corrosion 2010 [C]. San Antonio, 2010: 10196
7 Cui G, Yang Z Q, Liu J G, et al. A comprehensive review of metal corrosion in a supercritical CO2 environment [J]. Int. J. Greenh. Gas Control, 2019, 90: 102814
doi: 10.1016/j.ijggc.2019.102814
8 Eldevik F, Graver B, Torbergsen L E, et al. Development of a guideline for safe, reliable and cost efficient transmission of CO2 in pipelines [J]. Energy Procedia, 2009, 1: 1579
doi: 10.1016/j.egypro.2009.01.207
9 Lee J Y, Keener T C, Yang Y J. Potential flue gas impurities in carbon dioxide streams separated from coal-fired power plants [J]. J. Air Waste Manag. Assoc., 2009, 59: 725
doi: 10.3155/1047-3289.59.6.725
10 Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
doi: 10.1016/j.corsci.2018.03.041
11 Sun C, Wang Y, Sun J B, et al. Effect of impurity on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. J. Supercrit. Fluids, 2016, 116: 70
doi: 10.1016/j.supflu.2016.05.006
12 Brown J, Graver B, Gulbrandsen E, et al. Update of DNV recommended practice RP-J202 with focus on CO2 corrosion with impurities [J]. Energy Procedia, 2014, 63: 2432
doi: 10.1016/j.egypro.2014.11.265
13 Hua Y, Barker R, Neville A. The influence of SO2 on the tolerable water content to avoid pipeline corrosion during the transportation of supercritical CO2 [J]. Int. J. Greenh. Gas Control, 2015, 37: 412
doi: 10.1016/j.ijggc.2015.03.031
14 de Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenh. Gas Control, 2008, 2: 478
doi: 10.1016/j.ijggc.2008.04.006
15 Buit L, Ahmad M, Mallon W, et al. CO2 EuroPipe study of the occurrence of free water in dense phase CO2 transport [J]. Energy Procedia, 2011, 4: 3056
doi: 10.1016/j.egypro.2011.02.217
16 Xiang Y, Wang Z, Yang X X, et al. The upper limit of moisture content for supercritical CO2 pipeline transport [J]. J. Supercrit. Fluids, 2012, 67: 14
doi: 10.1016/j.supflu.2012.03.006
17 McGrail B P, Schaef H T, Glezakou V A, et al. Water reactivity in the liquid and supercritical CO2 phase: has half the story been neglected? [J]. Energy Procedia, 2009, 1: 3415
doi: 10.1016/j.egypro.2009.02.131
18 Zhao G X, Wang Y C, Zhang S Q, et al. Influence mechanism of H2S/CO2-charging on corrosion of J55 steel in an artificial solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 785
18 赵国仙, 王映超, 张思琦 等. H2S/CO2对J55钢腐蚀的影响机制 [J]. 中国腐蚀与防护学报, 2022, 42: 785
doi: 10.11902/1005.4537.2021.262
19 Sun C, Liu J X, Sun J B, et al. Corrosion behaviors of X65 steel in gaseous CO2 environment containing impurities [J]. J. China Univ. Pet. (Ed. Nat. Sci.), 2022, 46(3): 129
19 孙 冲, 刘建新, 孙建波 等. 含杂质气态CO2环境中X65钢腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2022, 46(3): 129
20 Brion D. ETUDE par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l'air et dans l'eau [J]. Appl. Surf. Sci., 1980, 5: 133
doi: 10.1016/0378-5963(80)90148-8
21 Xiang Y, Wang Z, Xu C, et al. Impact of SO2 concentration on the corrosion rate of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 [J]. J. Supercrit. Fluids, 2011, 58: 286
doi: 10.1016/j.supflu.2011.06.007
22 Siriwardane R V, Cook J M. Interactions of SO2 with sodium deposited on silica [J]. J. Colloid Interface Sci., 1985, 108: 414
doi: 10.1016/0021-9797(85)90280-2
23 Asami K, Hashimoto K. The X-ray photo-electron spectra of several oxides of iron and chromium [J]. Corros. Sci., 1977, 17: 559
doi: 10.1016/S0010-938X(77)80002-4
24 McIntyre N S, Zetaruk D G, Owen D. X-Ray photoelectron studies of the aqueous oxidation of Inconel-600 alloy [J]. J. Electrochem. Soc., 1979, 126: 750
doi: 10.1149/1.2129132
25 Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 1990, 2: 186
doi: 10.1021/cm00008a021
26 Allen G C, Curtis M T, Hooper A J, et al. X-Ray photoelectron spectroscopy of iron–oxygen systems [J]. J. Chem. Soc., Dalton Trans., 1974, (14): 1525
27 de Donato P, Mustin C, Benoit R, et al. Spatial distribution of iron and sulphur species on the surface of pyrite [J]. Appl. Surf. Sci., 1993, 68: 81
doi: 10.1016/0169-4332(93)90217-Y
28 Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure [J]. Phys. Scr., 1970, 1: 286
doi: 10.1088/0031-8949/1/5-6/020
29 Kelemen S R, George G N, Gorbaty M L. Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach [J]. Fuel, 1990, 69: 939
doi: 10.1016/0016-2361(90)90001-7
30 Xiang Y, Wang Z, Li Z, et al. Long term corrosion of X70 steel and iron in humid supercritical CO2 with SO2 and O2 impurities [J]. Corros. Eng., Sci. Technol., 2013, 48: 395
doi: 10.1179/1743278213Y.0000000099
31 Yan K, Xiang Y, Chen X L. Investigation on corrosion characteristics of pipeline in CO2 ocean storage system [J]. Corros. Sci. Prot. Technol., 2019, 31: 672
31 颜 开, 向 勇, 陈晓玲. CO2海洋封存系统管道腐蚀特性研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 672
32 Dugstad A, Halseid M, Morland B. Testing of CO2 specifications with respect to corrosion and bulk phase reactions [J]. Energy Procedia, 2014, 63: 2547
doi: 10.1016/j.egypro.2014.11.277
33 Dugstad A, Halseid M, Morland B. Experimental techniques used for corrosion testing in dense phase CO2 with flue gas impurities [A]. Corrosion 2014 [C]. San Antonio, 2014: 4383
34 Sun C, Sun J B, Wang Y, et al. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 193
doi: 10.1016/j.corsci.2016.02.032
35 Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
doi: 10.1016/j.corsci.2022.110729
36 Dugstad A, Halseid M, Morland B. Effect of SO2 and NO2 on corrosion and solid formation in dense phase CO2 pipelines [J]. Energy Procedia, 2013, 37: 2877
doi: 10.1016/j.egypro.2013.06.173
37 Xu M H, Zhang Q, Yang X X, et al. Impact of surface roughness and humidity on X70 steel corrosion in supercritical CO2 mixture with SO2, H2O, and O2 [J]. J. Supercrit. Fluids, 2016, 107: 286
doi: 10.1016/j.supflu.2015.09.017
38 Choi Y S, Nesic S, Young D. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments [J]. Environ. Sci. Technol., 2010, 44: 9233
doi: 10.1021/es102578c
[1] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[2] 张照易, 周学杰, 陈昊, 吴军, 陈志飈, 陈志坚. CCSAQ235B钢在长江淡水环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 735-744.
[3] 张明, 龚宁, 张博, 霍宏博, 李浩男, 钟显康. 基于腐蚀预测和强度计算的油管服役寿命评估[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[4] 解辉, 于超, 花靖, 蒋秀. NH+4浓度对N80钢在饱和CO2 的3%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 745-754.
[5] 邢少华, 彭文山, 钱峣, 李相波, 马力, 张大磊. 海水流速对经抛光和钝化表面处理的2205不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] 孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[7] 周龙, 鲁骏, 丁文珊, 李昊, 陶涛, 师超, 邵亚薇, 刘光明. 不同植酸盐对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 669-678.
[8] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[9] 丁昱智, 曹金鑫, 曹凤婷, 李涛, 陶建涛, 王铁钢, 杲广尧, 范其香. 基于风险的检验技术在石油炼化领域中的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 553-566.
[10] 胡琪, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. Inconel 718及其渗铝涂层在Na2SO4 + 5%NaCl混合盐膜下的热腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[11] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[12] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[13] 麻衡, 田会云, 刘宇茜, 王月香, 何康, 崔中雨, 崔洪芝. S420海工钢在不同海洋区带环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[14] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[15] 徐佳新, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K452合金表面CVD渗铝涂层制备温度对其750℃硫酸盐热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 612-622.