中国腐蚀与防护学报, 2024, 44(5): 1353-1360 DOI: 10.11902/1005.4537.2023.331

研究报告

Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究

潘宗宇1,2, 刘静,2, 姜志忠2,3, 罗林2,3, 贾寒冰2,3, 刘欣雨2,3

1 安徽大学 物质科学与信息技术研究院 合肥 230601

2 中国科学院合肥物质科学研究院核能安全技术研究所 合肥 230031

3 中国科学技术大学 合肥 230026

Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC

PAN Zongyu1,2, LIU Jing,2, JIANG Zhizhong2,3, LUO Lin2,3, JIA Hanbing2,3, LIU Xinyu2,3

1 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

2 Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

3 University of Science and Technology of China, Hefei 230026, China

通讯作者: 刘 静,E-mail:jing.liu@inest.cas.cn,研究方向为高温液态铅合金环境腐蚀及防护新材料

收稿日期: 2023-10-23   修回日期: 2023-12-09  

基金资助: 国家重点研发计划.  2022YFB1902502
中国科学院合肥大科学中心重点研发项目.  2022HSC-CIP028
中国科学院合肥物质科学研究院院长基金.  YZJJ2022QN39

Corresponding authors: LIU Jing, E-mail:jing.liu@inest.cas.cn

Received: 2023-10-23   Revised: 2023-12-09  

Fund supported: National Key R&D Program of China.  2022YFB1902502
Key Research and Development Project of Hefei Science Center, CAS.  2022HSC-CIP028
HFIPS Director's Fund.  YZJJ2022QN39

作者简介 About authors

潘宗宇,男,1996年生,硕士生

摘要

制备了Fe34Cr30Mo15Ni15Nb3Al3高熵合金,铸态组织包含FCC相、Laves相和B2-NiAl相。随后将高熵合金置于500℃、氧浓度为10-6%(质量分数)的液态铅铋合金中进行1000~2000 h的静态腐蚀实验。结果表明:高熵合金未发生明显的元素溶解、铅铋渗透和相变。静态腐蚀1000~2000 h后,Laves相区域表面只生成了Fe-Cr尖晶石。但腐蚀1000 h后,FCC/B2-NiAl相区域表面除了内层生成了Fe-Cr尖晶石,外层还生成了贫Cr的Fe-Cr尖晶石;随着腐蚀时间增加到1500 h,FCC/B2-NiAl相区域外层贫Cr的Fe-Cr尖晶石发生脱落;腐蚀2000 h后,Fe3O4开始生成,覆盖FCC/B2-NiAl相区域外表面。高熵合金表面的氧化层均较薄,厚度不超过3 µm,表现出较好的耐腐蚀性。高熵合金具有良好耐腐蚀的原因是由于Laves相分布均匀,抑制了金属元素的向外扩散。

关键词: Fe34Cr30Mo15Ni15Nb3Al3高熵合金 ; 液态铅铋合金腐蚀 ; Laves相 ; Fe-Cr尖晶石

Abstract

In this paper, a high-entropy alloy Fe34Cr30Mo15Ni15Nb3Al3 was prepared via vacuum induction melting technique. The cast alloy consists of FCC phase, Laves phase and B2-NiAl phase. Then, the high-entropy alloy was subjected to corrosion test at 500oC in static molten Pb-Bi eutectic (MBE) containing 10-6% oxygen (in mass fraction) for 1000, 1500 and 2000 h, respectively. The results showed that after corrosion test, the high entropy alloy did not show obvious signs of being attacked by molten Pb-Bi eutectic, namely, there was no obvious dissolution of alloy components and phase transformation, and no obvious inward permeation of Pb and Bi from MBE into the alloy. Only a continuous Fe-Cr spinel scale was formed on the Laves phase region after static corrosion from 1000 h to 2000 h. It is worth mentioning in particular that after exposure for 1000 h, both of Fe-Cr spinel and Cr-depleted Fe-Cr spinel was formed on the surface of FCC/B2-NiAl phase region. As the corrosion time increased to 1500 h, the outer scale of Cr-depleted Fe-Cr spinel formed on the FCC/B2-NiAl phase region spalled off. After exposure for 2000 h, Fe3O4 was generated above the Fe-Cr spinel scale, and covered the entire surface of FCC/B2-NiAl phase region. In conclusion, the oxide scales formed on the high-entropy alloy are very thin and compact, with a maximum thickness less than 3 µm, so that the high-entropy alloy presented good resistance to MBE corrosion. The outstanding corrosion resistance of high-entropy alloy may be attributed to the homogeneous distribution of Laves phase, which effectively suppresses the outward diffusion of components of the high-entropy alloy.

Keywords: Fe34Cr30Mo15Ni15Nb3Al3 high-entropy alloy ; Liquid lead-bismuth eutectic alloy corrosion ; Laves phase ; Fe-Cr spinel

PDF (9810KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究. 中国腐蚀与防护学报[J], 2024, 44(5): 1353-1360 DOI:10.11902/1005.4537.2023.331

PAN Zongyu, LIU Jing, JIANG Zhizhong, LUO Lin, JIA Hanbing, LIU Xinyu. Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(5): 1353-1360 DOI:10.11902/1005.4537.2023.331

铅冷快堆 (LFR)[1]作为第四代核能系统中的六种堆型之一,因其固有安全性好、核废料产生量少、易于小型化、防扩散、可持续性强等优点,受到国际核能领域的高度重视[2~4]。其中液态铅铋合金(LBE)因具有优异的热物理性能和化学性质等特点,被考虑用作LFR的主选冷却剂之一。但在高温下,LBE会对结构材料造成严重的腐蚀[5~8],这是LFR工程应用亟需解决的问题之一。

目前,LFR主要的候选结构材料包括铁素体/马氏体钢(F/M)、奥氏体钢和氧化物弥散强化钢(ODS) 等[9~11]。F/M钢在有氧LBE环境下一般可以生成保护性的氧化层,但是氧化层较厚不利于管道的传热[9]。奥氏体钢在有氧LBE环境中生成的氧化层较薄,但是在温度高于500℃时,容易发生严重的溶解腐蚀[10]。ODS钢[11]耐铅铋腐蚀性较好,但是由于其制备过程复杂以及制作成本高,工程应用之前还需进行制备工艺探索。因此研发更加耐铅铋腐蚀且制备工艺简单的结构材料对于LFR的发展至关重要。

高熵合金(HEAs)因其高熵效应、缓慢扩散效应、晶格畸变效应和“鸡尾酒效应”,使其具有合金元素更难扩散、更易形成固溶体、良好的力学性能和耐腐蚀性等特征[12~16],有望在LFR中获得应用。然而,HEAs在LBE环境下的腐蚀研究刚刚起步,但是研究者对HEAs在其它介质中的腐蚀已经开展了一些研究。Al-Cr-Fe-Ni-Co高熵合金因表现出良好的力学性能和耐腐蚀性能[17,18],受到研究者的广泛关注,然而由于Co的中子吸收和中子活化问题[15],在LFR中应用需要将其用其它元素替代。Shi等[19]研究了添加Cu,Ti和Nb对AlCrFeNi基高熵合金在液态Pb中腐蚀行为的影响,结果表明,添加Nb的高熵合金表现出良好的耐腐蚀性。Xu等[20]通过理论计算,发现Nb和Mo可抑制马氏体钢在无氧(或低氧浓度)的液态Pb和Bi中的溶解腐蚀。同时Mo和Nb在液态Pb的溶解度较低,尤其是Mo的溶解度比Ni、Cr和Fe低至少一个数量级[4]。综上,可以考虑在无Co的Al-Cr-Fe-Ni体系基础上,添加Mo和Nb来提高其抗腐蚀性能。

本文制备了Fe34Cr30Mo15Ni15Nb3Al3高熵合金(简称HEA-15),并研究了其在500℃、氧浓度为10-6%(质量分数)的LBE中的腐蚀行为,以期为耐铅铋腐蚀的高熵合金研发提供建议。

1 实验方法

采用真空感应熔炼技术制备了高熵合金母合金,所用的原材料纯度均为99.99%。熔炼后将其加工成尺寸为10 mm × 10 mm × 5 mm的块状样品,然后分别使用SiC砂纸打磨和金刚石悬浮液进行抛光处理,最后使用酒精清洗后干燥备用。

静态铅铋腐蚀实验是在500℃、氧含量为10-6%的液态铅铋合金中进行,腐蚀时间分别为1000、1500和2000 h。腐蚀实验结束后,对于表面分析样品,首先将其置于冰乙酸、过氧化氢和无水乙醇体积比为1∶1∶1的混合液中,清洗其表面粘附的残余铅铋合金;再使用丙酮和无水乙醇进行清洗吹干,然后进行组织观察。对于横截面分析样品,采用冷镶后进行打磨、抛光和清洗。

使用X’Pert Pro MPD型X射线衍射仪(XRD)对腐蚀前后的样品进行相结构分析,靶材为Cu靶,工作电压40 kV,电流40 mA,扫描角度为20°~90°,扫描时间20 min。使用配有X射线能谱仪(EDS)的ΣIGMA型场发射扫描电子显微镜(FE-SEM)对腐蚀前后的样品表面和截面进行微观形貌以及元素分布分析。对每个截面样品选择5个典型区域进行线扫描,来测量每个腐蚀样品氧化层的厚度。

2 结果与分析

2.1 腐蚀前微观组织分析

图1为HEA-15合金腐蚀前XRD谱,形成了FCC相、Laves相和B2-NiAl相,PDF卡片编号分别为PDF#33-0945、PDF#17-0908和PDF#44-1188,由于其它元素的固溶,FCC相晶格常数增大,Laves相晶格常数减小,导致FCC相衍射峰向左偏移,Laves相衍射峰向右偏移;同时由于FCC相晶格畸变较大,导致了FCC相衍射峰减弱[21]图2为腐蚀前HEA-15合金的微观组织,表1为腐蚀前特征区域的能谱点扫描结果。可以看出,白色枝晶区域富含Mo和Nb,其它元素都比较贫乏,结合XRD结果可知其为Laves相。灰色枝晶间区域富集Fe和Cr,Ni和Al接近名义成分含量,贫Mo,不含Nb,结合XRD结果可知其为FCC相。灰色枝晶间区域内均匀的分布着黑色沉淀物(图2b),EDS测量显示黑色沉淀物中富含Ni和Al,不含Nb,结合XRD结果可知其为B2-NiAl相。同时用Image J对图2b进行处理,计算了各个相的占比,得出HEA-15合金的FCC相、Laves相和B2-NiAl相分别占比约75.95%、19.09%和4.96%。

图1

图1   HEA-15合金腐蚀前的XRD谱

Fig.1   XRD pattern of HEA-15 alloy before corrosion


图2

图2   HEA-15合金腐蚀前的微观组织

Fig.2   Microstructure of HEA-15 alloy before corrosion (a) and enlarged region in Fig.2a (b)


表1   HEA-15合金中各元素质量分数

Table 1  Mass fraction of elements in HEA-15 alloy

RegionFeCrMoNbAlNi
Map scanning34.529.814.92.92.915.0
Laves phase (white)29.120.623.713.41.711.5
FCC phase (gray)36.932.813.0-2.614.7
B2-NiAl phase (black)30.428.011.0-6.923.7

新窗口打开| 下载CSV


2.2 腐蚀后表面组织分析

图3是HEA-15合金在液态LBE中腐蚀不同时间后表面的XRD谱。可以看出,HEA-15合金表面生成了Fe3O4和(Fe,Cr)3O4,未检测到其它的氧化物,均探测到了基体峰。

图3

图3   不同腐蚀时间后HEA-15合金表面的XRD谱

Fig.3   XRD patterns of HEA-15 alloy surface after different corrosion times


图4表2是不同腐蚀时间后HEA-15合金表面形貌和能谱点扫描结果。腐蚀1000 h后,HEA-15合金的表面形貌由平坦区域、凹陷区域以及平坦区域上方的白色结节状突起物(图4a和d)组成。与腐蚀1000 h后相比,腐蚀1500 h后表面的白色结节状突起物明显减少(图4b和e)。结合表2中的点1~5和腐蚀后XRD结果可以判断,腐蚀1000和1500 h后,平坦和凹陷区域均为Fe-Cr尖晶石,白色突起物是贫Cr的Fe-Cr尖晶石。腐蚀2000 h后,合金表面出现了大量的块状突起物 (图4c和f),结合表2中点6、7和腐蚀后XRD结果可以判断,在块状突起物附近的平坦区域为Fe-Cr尖晶石,外层的块状突起物为Fe3O4,块状Fe3O4尺寸约为1.5 µm。

图4

图4   不同腐蚀时间后HEA-15合金表面的微观形貌

Fig.4   Surface morphologies of HEA-15 alloy after corrosion for 1000 h (a, d), 1500 h (b, e) and 2000 h (c, f)


表2   图4的点扫描数据 (atomic fraction / %)

Table 2  EDS data marked in Fig.4

RegionOFeCrNiAlMoNb
Point 135.622.223.27.53.36.22.0
Point 254.019.517.13.52.83.1-
Point 337.821.223.49.43.94.2-
Point 441.918.020.07.03.67.02.6
Point 536.624.423.48.33.14.2-
Point 629.626.423.98.93.46.51.3
Point 760.026.38.11.91.72.0-

新窗口打开| 下载CSV


腐蚀1000和1500 h后,HEA-15合金在凹陷区域的Fe-Cr尖晶石可以检测到Nb,其它区域均检测不到Nb (图4表2),可以推测凹陷区域下方基体为Laves相。为了进一步证实此猜测,对图2a中Laves相和图4a中氧化层凹陷区域宽度和长度进行了统计对比,如图5所示。可以看出,1000 h腐蚀后合金表面氧化层凹陷区域的宽度和长度都包含在其原始组织的Laves相尺寸范围内,因此可以判定氧化层凹陷区域下方基体是Laves相。而腐蚀2000 h后,合金表面没有发现明显的凹陷区域(图4c和f),但是在块状突起物附近的平坦区域(Fe-Cr尖晶石区域)可以检测到Nb,推测该区域下方基体也是Laves相。

图5

图5   图2a中Laves相和图4a中氧化层凹陷区域宽度和长度对比

Fig.5   Comparison of the widths (a) and lengths (b) between Laves phases in Fig.2a and the depression areas of the oxide layer after corrosion for 1000 h in Fig.4a


2.3 腐蚀后截面组织分析

图6为不同腐蚀时间后HEA-15合金截面SEM和对应的EDS面扫描结果,图7图6对应的线扫描结果。腐蚀1000和1500 h后,HEA-15合金表面均分布着厚度均匀的连续氧化层(图6a和c)。在氧化层区域观察到Fe和Cr的富集,没有Al的富集(图6b和d),结合图4可知,该氧化层为Fe-Cr尖晶石层,对应的是平坦和凹陷区域。在Fe-Cr尖晶石层外层出现明显的Fe和O信号峰和微弱的Cr信号峰 (图7a),再结合图4可知,该氧化物为贫Cr的Fe-Cr尖晶石,对应的是白色突起物。腐蚀2000 h后,合金表面的氧化层出现了明显的分离(图6e和f),结合图7c和图4可知,脱落的氧化物为Fe3O4。Fe3O4的脱落可能是因为其在向外生长过程中容易将LBE包裹住;同时其为疏松多孔结构,也容易导致LBE渗入,在LBE的作用下发生脱落[22]。未脱落的氧化层为Fe-Cr尖晶石。在基体和氧化层界面处未明显观察到因元素扩散而形成的过渡层[23]。结合图6a、c、e和图7可以看出,腐蚀1000和1500 h后的Fe-Cr尖晶石厚度分别约为1.12和1.24 µm,腐蚀2000 h后,Fe-Cr尖晶石的厚度约为1.93 µm,Fe3O4厚度约为0.70 µm。

图6

图6   HEA-15合金不同腐蚀时间后的截面形貌和EDS面扫描图

Fig.6   Cross-sectional morphologies (a, c, e) and EDS maps (b, d, f) of HEA-15 alloy after corrosion for 1000 h (a, b), 1500 h (c, d) and 2000 h (e, f)


图7

图7   HEA-15合金不同腐蚀时间后的线扫描结果

Fig.7   Line scan results of HEA-15 alloy after different corrosion times corresponding to the cross-section in Fig.6a (a), Fig.6c (b) and Fig.6e (c)


3 讨论

HEA-15合金在500℃、氧浓度为10-6%的液态LBE中腐蚀1000~2000 h后,Laves相区域表面仅生成了Fe-Cr尖晶石层,而FCC/B2-NiAl相区域生成了内层Fe-Cr尖晶石层,外层首先生成了贫Cr的Fe-Cr尖晶石,而后脱落,最终生成了Fe3O4。合金表面氧化层的生长特征与合金相组成引起的元素扩散差异有关。

HEA-15合金中的Fe和Cr在液态LBE中溶解度较高,导致其表面的Fe和Cr会向外扩散到液态LBE中[4,24],LBE中的O会向合金基体扩散。根据Tsai等[25]的研究,Cr和Fe在Co-Cr-Fe-Mn-Ni高熵合金中扩散速率较快。因此可推测,腐蚀1000 h后,向基体扩散的O与从基体向外扩散的Cr、Fe结合在表面形成Fe-Cr尖晶石。同时,Lobnig等[26]的研究表明,Fe-Cr-Ni-Mn合金表面生成的Cr2O3对Fe向外扩散速率影响较小,而对Cr的向外扩散速率降低影响较为明显。因此可推测,在本研究中Fe可以通过Fe-Cr尖晶石向外扩散,而Cr的向外扩散会受到抑制。另外,HEA-15合金中包含FCC相、Laves相和B2-NiAl相,元素在Laves相中扩散相对较为困难[27,28]。因此,在FCC/B2-NiAl相中的Fe和少量Cr通过Fe-Cr尖晶石向外扩散在其表面生成了贫Cr的Fe-Cr尖晶石,在Laves相表面只生成了薄薄的Fe-Cr尖晶石(图4a和d)。腐蚀1500 h后,Laves相区域上方仍然只生成了一层连续的Fe-Cr尖晶石层。相比于腐蚀1000 h后,发现FCC/B2-NiAl表面贫Cr的Fe-Cr尖晶石区域明显减少,一方面可能是由于Fe-Cr尖晶石层不断增厚,使得Fe和Cr向外扩散变得更加缓慢,导致FCC/B2-NiAl相区域外层贫Cr的Fe-Cr尖晶石难以继续生长,另一方面可能是由于腐蚀1000 h后生成的贫Cr的Fe-Cr尖晶石不连续(图4b和e),在腐蚀过程中发生脱落。腐蚀2000 h后,Laves相区域上方仍然为Fe-Cr尖晶石层。相比于腐蚀1000和1500 h后,由于Fe-Cr尖晶石层厚度继续增加,进一步抑制了Cr的向外扩散,而Fe继续向外扩散,在FCC/B2-NiAl相外层形成了Fe3O4层,内层为Fe-Cr尖晶石层(图4c和f)。在合金和氧化层的界面处也没有观察到明显的过渡层,可能是本研究中的高熵合金3种相分布较为均匀,同时Laves相对基体元素的亲和力都较高[27,28],因此很难发生元素大量向外扩散。

为了进一步确定HEA-15合金耐铅铋腐蚀性,表3统计了HEA-15合金在不同腐蚀时间生成的Fe-Cr尖晶石层和Fe3O4的厚度。可以看出,HEA-15合金表面的氧化层厚度随着腐蚀时间的增加而增加,表面的氧化层厚度比各种钢[29,30]在相同或相近条件下形成的氧化层低至少一个数量级,这与合金元素在高熵合金中的扩散较为缓慢有关。

表3   不同腐蚀时间氧化层的厚度

Table 3  Thickness of oxide layer for different corrosion times (µm)

Oxide type1000 h1500 h2000 h
Fe-Cr Spinel1.121.241.93
Fe3O4--0.70

新窗口打开| 下载CSV


HEA-15合金中,与其它基体元素相比,Al具有最高的氧亲和力[31,32],最容易与O结合生成Al2O3。但是本研究中未生成明显的Al2O3,造成这一结果原因可能是,虽然HEA-15合金中Al的添加量为3%,达到Fe-Cr-Al合金中生成明显Al2O3的阈值[33],但是HEA-15合金中Al主要存在于占比较少的B2-NiAl相(表1),而合金中占比较多的FCC相和Laves相中Al含量低于3%,很难生成明显的Al2O3。在液态LBE环境下,高熵合金表面生成稳定的Al2O3的Al含量,值得去进一步研究。

4 结论

(1) 制备了具有FCC相、Laves相和B2-NiAl相的多相高熵合金,其中,FCC相、Laves相和B2-NiAl相占比分别约为75.95%、19.09%和4.96%。

(2) HEA-15合金表现出优异的耐铅铋腐蚀性。在500℃、氧浓度为10-6%的液态LBE中生成了连续致密保护性的内层氧化物Fe-Cr尖晶石,外层氧化物只出现在FCC/B2-NiAl相区域,随着腐蚀时间的增加,外层氧化层发生了从贫Cr的Fe-Cr尖晶石到Fe3O4的演变。腐蚀1000、1500和2000 h,HEA-15合金表面的尖晶石厚度分别为1.12、1.24和1.93 µm。Fe3O4只出现在腐蚀2000 h样品中,厚度为0.70 µm。这与合金中Laves相有关,Laves相对基体元素的亲和力高,可以阻碍基体金属元素的向外扩散,有效的延迟氧化层的生长。

(3) XRD和微观分析表明,HEA-15合金在500℃、氧浓度为10-6%的液态LBE环境中腐蚀1000~2000 h后,均未发生明显的元素溶解和相变,保持稳定的相结构。

参考文献

Kelly J E.

Generation IV international forum: a decade of progress through international cooperation

[J]. Prog. Nucl. Energy, 2014, 77: 240

[本文引用: 1]

DOE-GIF G I F.

A Technology Roadmap for Generation IV Nuclear Energy Systems

[R]. Technical Report GIF2002200, GIF, 2002.

[本文引用: 1]

Li N.

Lead-alloy coolant technology and materials-technology readiness level evaluation

[J]. Prog. Nucl. Energy, 2008, 50: 140

Nuclear Energy Agency.

Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermalhydraulics and technologies

[R]. Paris: Organisation for Economic Cooperation and Development, 2015

[本文引用: 3]

Müller G, Heinzel A, Konys J, et al.

Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 ℃ after 4000-7200 h

[J]. J. Nucl. Mater., 2004, 335: 163

[本文引用: 1]

Zhang J S.

A review of steel corrosion by liquid lead and lead–bismuth

[J]. Corros. Sci., 2009, 51: 1207

Gong X, Li R, Sun M Z, et al.

Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program

[J]. J. Nucl. Mater., 2016, 482: 218

Gorse D, Auger T, Vogt J B, et al.

Influence of liquid lead and lead-bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems

[J]. J. Nucl. Mater., 2011, 415: 284

[本文引用: 1]

Li M Y, Jiang Z Z, Chen L L, et al.

Study on corrosion products of T91 and 316L steels in oxygen controlled LBE for 600 hrs

[J]. Nucl. Sci. Eng., 2018, 38: 784

[本文引用: 2]

李明扬, 姜志忠, 陈刘利 .

T91和316L钢在氧控铅铋中600小时后腐蚀产物分析

[J]. 核科学与工程, 2018, 38: 784

[本文引用: 2]

Tian S J, Zhang J W.

Corrosion behavior of 316L and T91 steels in stagnant lead-bismuth eutectic at 550 °C

[J]. J. Univ. Sci. Technol. China, 2015, 45(9): 751

[本文引用: 1]

田书建, 张建武.

316L和T91不锈钢在550℃静态铅铋合金中的腐蚀行为

[J]. 中国科学技术大学学报, 2015, 45(9): 751

[本文引用: 1]

Takaya S, Furukawa T, Müller G, et al.

Al-containing ODS steels with improved corrosion resistance to liquid lead–bismuth

[J]. J. Nucl. Mater., 2012, 428: 125

[本文引用: 2]

George E P, Curtin W A, Tasan C C.

High entropy alloys: a focused review of mechanical properties and deformation mechanisms

[J]. Acta Mater., 2020, 188: 435

[本文引用: 1]

Li Z Z, Zhao S T, Ritchie R O, et al.

Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys

[J]. Prog. Mater. Sci., 2019, 102: 296

Sathiyamoorthi P, Kim H S.

High-entropy alloys with heterogeneous microstructure: processing and mechanical properties

[J]. Prog. Mater. Sci., 2022, 123: 100709

Zhang P, Jiang L, Yang J X, et al.

Research progress in refractory high entropy alloys for nuclear applications

[J]. Mater. Rep., 2022, 36: 22060260

[本文引用: 1]

张 平, 蒋 丽, 杨金学 .

核用难熔高熵合金的研究进展

[J]. 材料导报, 2022, 36: 22060260

[本文引用: 1]

Zhang Y, Zuo T T, Tang Z, et al.

Microstructures and properties of high-entropy alloys

[J]. Prog. Mater. Sci, 2014, 61: 1

[本文引用: 1]

Huang Y H, Wang J B, Wang Z J, et al.

Corrosion behavior of high strength AlCrFeNi multi-principal-component alloy in lead-bismuth alloy

[J]. Nucl. Power. Eng., 2023, 44(S1): 137

[本文引用: 1]

黄赟浩, 王健斌, 王志军 .

铅铋合金环境中高强AlCrFeNi多主元合金的腐蚀行为

[J]. 核动力工程, 2023, 44(S1): 137

[本文引用: 1]

Lu Y P, Dong Y, Guo S, et al.

A promising new class of high-temperature alloys: eutectic high-entropy alloys

[J]. Sci. Rep., 2014, 4: 6200

DOI      PMID      [本文引用: 1]

High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700 degrees C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

Shi H, Fetzer R, Jianu A, et al.

Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb

[J]. Corros. Sci., 2021, 190: 109659

[本文引用: 1]

Xu Y C, Song C, Zhang Y G, et al.

An energetic evaluation of dissolution corrosion capabilities of liquid metals on iron surface

[J]. Phys. Chem. Chem. Phys., 2014, 16: 16837

DOI      PMID      [本文引用: 1]

Using first principles calculations, dissolution corrosion of liquid metals on iron surfaces has been investigated by calculating adsorption energies of metal atoms in the liquid phase on the surface and escape energies of surface Fe atoms. The adsorption energies, characterizing the stability of the adsorbed atoms on the investigated surfaces, show that Bi is more stable than Pb and Au. The escape energies, representing the energy required for an Fe atom to escape from the surface, show that adsorbed Pb makes surface Fe atoms escape more easily than Bi and Au. The combination of adsorption energy and escape energy indicates that the corrosion capabilities of liquid metals decrease in the order Bi > Pb > Au. This is further proved by the investigation of surface properties, such as inter-layer distance, magnetic momentum and charge density difference. The results are consistent with experimental results that Fe can be corroded more severely in Bi than in Pb. In the case of liquid alloys, chemical proportions of compositions are incorporated to evaluate the corrosion capabilities of Pb-Bi eutectic (LBE) and Pb-Au eutectic (LGE). It is found that LBE has more severe corrosion capability than LGE. The energetic calculation is further developed in evaluating the effect of alloying elements in popular steels on the dissolution corrosion. The results indicate that Si, V, Nb and Mo may mitigate the dissolution corrosion of martensite steels in liquid Pb, Bi and Au.

Yeh J W, Chang S Y, Hong Y D, et al.

Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

[J]. Mater. Chem. Phys., 2007, 103: 41

[本文引用: 1]

Li D D, Song C, He H Y, et al.

An atomistic insight into the corrosion of the oxide film in liquid lead-bismuth eutectic

[J]. Phys. Chem. Chem. Phys., 2014, 16: 7417

DOI      PMID      [本文引用: 1]

When used as a protective scale, the Fe3O4 layer covering the stainless steel surface in accelerator driven subcritical systems (ADS) is corroded by liquid lead-bismuth eutectics (LBE). By performing theoretical calculations, we reveal that both Pb and Bi at the interface between the LBE and the Fe3O4 scale, favorably adsorb onto the Fe3O4 surfaces, weakening the strength of Fe-O bonds nearby significantly. This facilitates the movement of iron atoms toward the deposited Pb(Bi) and away from the Fe3O4 surface, thus causing corrosion. Such corrosion behavior becomes severe if oxygen vacancies exist in the surface region.

Shi H, Jianu A, Weisenburger A, et al.

Corrosion resistance and microstructural stability of austenitic Fe-Cr-Al-Ni model alloys exposed to oxygen-containing molten lead

[J]. J. Nucl. Mater., 2019, 524: 177

[本文引用: 1]

Gossé S.

Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic

[J]. J. Nucl. Mater., 2014, 449: 122

[本文引用: 1]

Tsai K Y, Tsai M H, Yeh J W.

Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys

[J]. Acta Mater., 2013, 61: 4887

[本文引用: 1]

Lobnig R E, Schmidt H P, Hennesen K, et al.

Diffusion of cations in chromia layers grown on iron-base alloys

[J]. Oxid. Met., 1992, 37: 81

[本文引用: 1]

Huang D, Lu J S, Zhuang Y X, et al.

The role of Nb on the high temperature oxidation behavior of CoCrFeMnNbxNi high-entropy alloys

[J]. Corros. Sci., 2019, 158: 108088

[本文引用: 2]

Ide S, Funakawa Y, Kato Y, et al.

Retardation of 20%Cr steel oxidation with Laves phase precipitation

[J]. Mater. Sci. Forum, 2007, 539-543: 4887

[本文引用: 2]

Gong X, Xiao J, Wang H, et al.

Corrosion behavior and mechanisms of ferritic/martensitic steels and austenitic stainless steels in liquid lead-bismuth eutectic

[J]. Nucl. Sci. Eng., 2020, 40: 864

[本文引用: 1]

龚 星, 肖 军, 王 浩 .

铁素体/马氏体钢和奥氏体不锈钢的液态铅铋腐蚀行为与机理

[J]. 核科学与工程, 2020, 40: 864

[本文引用: 1]

Luo W W, Huang Q Y, Luo L, et al.

Effect of Ce on microstructure evolution of oxide scale for CLAM steel exposed to LBE containing 10-6 wt% oxygen at 500oC

[J]. J. Nucl. Mater., 2023, 573: 154109

[本文引用: 1]

Hasegawa M.

Ellingham diagram

[A]. Seetharaman S. Treatise on Process Metallurgy: Volume 1: Process Fundamentals [M]. Amsterdam: Elsevier, 2014: 507

[本文引用: 1]

Stott F H, Wood G C, Stringer J.

The influence of alloying elements on the development and maintenance of protective scales

[J]. Oxid. Met., 1995, 44: 113

[本文引用: 1]

Wang H, Xiao J, Wang H, et al.

Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review

[J]. Coatings, 2021, 11: 364

[本文引用: 1]

/