Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 141-150     CSTR: 32134.14.1005.4537.2023.070      DOI: 10.11902/1005.4537.2023.070
  研究报告 本期目录 | 过刊浏览 |
挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究
孙硕1, 代珈铭1, 宋影伟2(), 艾彩娇3
1.沈阳工业大学环境与化学工程学院 沈阳 110870
2.中国科学院金属研究所 核用材料与安全评价重点实验室 沈阳 110016
3.滨州魏桥国科高等技术研究院 山东省先进铝基材料与技术重点实验室 滨州 256600
Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere
SUN Shuo1, DAI Jiaming1, SONG Yingwei2(), AI Caijiao3
1.School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Shandong Key Laboratory Advanced Aluminum Materials and Technology, Binzhou Institute of Technology, Binzhou 256600, China
引用本文:

孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
Shuo SUN, Jiaming DAI, Yingwei SONG, Caijiao AI. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 141-150.

全文: PDF(16882 KB)   HTML
摘要: 

将挤压态EW75镁合金长期暴露在沈阳典型工业大气中,采用扫描电镜观察其在大气中暴晒不同周期后的表面和截面微观腐蚀形貌,并采用Raman光谱及EDS能谱分析腐蚀产物化学成分。结果表明,工业大气中的可溶性尘土会在挤压态EW75镁合金表面沉积,形成圆形的腐蚀产物,对下面的镁基体有较好的保护性;由于挤压态EW75镁合金中析出相尺寸小,且与镁基体之间的电位差较小,微电偶作用较弱,发生均匀腐蚀。此外,沈阳的季节变化对镁合金的腐蚀影响很大,与低温、低湿的冬季相比,挤压态EW75镁合金在高温高湿的夏季腐蚀率明显更高。

关键词 稀土镁合金大气腐蚀耐蚀性工业大气微电偶腐蚀    
Abstract

Mg-alloys as the lightest metallic structural materials have many excellent properties, but their corrosion resistance is poor. Thus the corrosion behavior of Mg-alloy in different service conditions need to be acquired. Especially, the composition of pollutants and meteorological factors in different atmospheric environments may affect the corrosion behavior of Mg-alloys. In this paper, the corrosion behavior of the extruded EW75 Mg-alloy in Shenyang industrial atmosphere was investigated by atmospheric exposure at Shenyang atmospheric test station located at 123°26' east and 41°46' north. After exposure for different durations, the test alloys were characterized by means of SEM, EDS and Raman spectroscopy in terms of their surface and cross sectional morphology and the chemical composition of corrosion products. The results show that the dusts containing soluble salts in the industrial atmosphere were deposited on the surface of the extruded EW75 Mg-alloy and form round-shaped corrosion products, which show good protection for the corresponding magnesium matrix; the potential difference between the fine precipitation phases and α-Mg is low, which exhibits weak micro-galvanic effect, resulting in the formation of uniform corrosion. In addition, the corrosion rate of Mg-alloys in Shenyang atmosphere is greatly influenced by seasonal variations. Compared with the low temperature and low humidity winter, the corrosion rate of the extruded EW75 Mg-alloy is significantly higher in the high temperature and high humidity summer.

Key wordsrare-earth Mg-alloy    atmospheric corrosion    corrosion resistance    industrial atmosphere    micro-galvanic corrosion
收稿日期: 2023-03-16      32134.14.1005.4537.2023.070
ZTFLH:  TG174  
基金资助:国家自然科学基金(52171086);国家科技基础条件平台建设项目(2005DKA10400-15-Z04);魏桥合作项目(GYY-JSBU-2022-005)
通讯作者: 宋影伟,Email: ywsong@imr.ac.cn,研究方向为轻合金的腐蚀与防护
Corresponding author: SONG Yingwei, E-mail: ywsong@imr.ac.cn
作者简介: 孙 硕,男,1972年生,博士,副教授

Date

Rainfall

mm

Rainfall time

d

Temperature / oCRH / %
Monthly maximum

Monthly

minimum

Monthly

average

Monthly maximum

Monthly

minimum

Monthly

average

2021.0784.49341926.5984277.8
2021.0888.512301322.5983174.8
2021.09199.31527617.4992674.6
2021.1037.8322-59992065.2
2021.1148.8812-12-1.9982167.3
2021.123.439-19-6.1972054.8
2022.010.323-22-11842451.3
2022.027.5410-21-5931952
2022.0330718-84.597953.9
2022.0410429213.4931145.9
2022.0586.4933418.51001456
2022.06319.820311122.41004681.9
表1  实验期间沈阳气象数据
图1  挤压态EW75镁合金表面微观形貌
图2  挤压态EW75镁合金在沈阳大气环境中暴露不同时间后的宏观腐蚀形貌
图3  挤压态EW75镁合金在沈阳大气中暴露不同时间后的表面微观腐蚀形貌
ElementsMgOSiSCa
Rod-like product12.1432.9554.91--
Round product47.8044.342.802.302.76
表2  图3a中腐蚀产物EDS分析结果
图4  挤压态EW75镁合金在沈阳大气中暴露1 a后的腐蚀产物拉曼光谱
PositionMgCOAlYSiSClCaFeGd
A30.8215.7840.941.580.824.231.480.393.96--
B34.6515.7645.100.90-1.200.28-1.370.74-
C56.11-41.09--1.47-1.33---
D43.416.9028.40-6.21-1.12-1.71-12.24
表3  图5中各处EDS分析结果
图5  挤压态EW75镁合金在沈阳大气中暴露12个月后的腐蚀产物形貌
图6  挤压态EW75镁合金在沈阳大气中暴露不同时间并清除腐蚀产物后表面微观腐蚀形貌
图7  挤压态EW75镁合金在沈阳大气中暴露不同时间并清除腐蚀产物的截面腐蚀形貌
图8  挤压态EW75镁合金腐蚀失重速率变化图
图9  挤压态EW75镁合金在沈阳大气中暴露11个月腐蚀产物膜截面形貌
图10  挤压态EW75镁合金在工业大气中暴露初期腐蚀机理示意图
1 Li X, Zhang C, Wang J S, et al. Research progress on corrosion behavior and protection technology of magnesium alloys [J]. Aeronaut. Manuf. Technol., 2021, 64(19): 59
1 李 鑫, 张 弛, 王俊升 等. 镁合金腐蚀行为与防护技术研究进展 [J]. 航空制造技术, 2021, 64(19): 59
2 Tang Z F, Liu X K, Ren G M. Requirements for the use of magnesium alloy materials in aircraft engine airworthiness standards [J]. Aeronaut. Stand. Qual., 2014, (6): 26
2 唐正府, 刘兴科, 任光明. 航空发动机适航标准中镁合金材料使用要求 [J]. 航空标准化与质量, 2014, (6): 26
3 Li S Y, Zheng D R. Development and analysis of magnesium alloy components of new energy vehicles [J]. J. New Ind., 2019, 9(1): 66
3 李淑英, 郑德润. 新能源汽车镁合金零部件的开发分析 [J]. 新型工业化, 2019, 9(1): 66
4 Song G L, Atrens A. Corrosion mechanisms of magnesium alloys [J]. Adv. Eng. Mater., 1999, 1: 11
doi: 10.1002/(ISSN)1527-2648
5 Zeng X Q. Research and application progress of rare earth magnesium alloy [J]. Rare Earth Inf., 2016, (2): 26
5 曾小勤. 稀土镁合金研究与应用进展 [J]. 稀土信息, 2016, (2): 26
6 Zhang X, Zhang K, Li X G, et al. Comparative study on corrosion behavior of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr alloy in 5% NaCl aqueous solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1018
doi: 10.1016/S1003-6326(11)61278-8
7 Liu J H, Song Y W, Chen J C, et al. The special role of anodic second phases in the micro-galvanic corrosion of EW75 Mg alloy [J]. Electrochim. Acta, 2016, 189: 190
doi: 10.1016/j.electacta.2015.12.075
8 Feng B J, Liu G N, Yang P X, et al. Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution [J]. J. Magnes. Alloy., 2022, 10: 1598
doi: 10.1016/j.jma.2020.12.013
9 Wang F P, Li X G, Lin C, et al. Atmospheric corrosion behavior of AZ91D magnesium alloy in Beijing area [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 345
9 王凤平, 李晓刚, 林 翠 等. AZ91D镁合金在北京地区的大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2004, 24: 345
10 Lin C, Li X G, Li M, et al. Corrosion behavior of AZ91D magnesium alloy in city atmosphere [J]. Acta Metall. Sin., 2004, 40: 191
10 林 翠, 李晓刚, 李 明 等. Mg合金AZ91D在城市大气环境中的腐蚀行为 [J]. 金属学报, 2004, 40: 191
11 Xia L T, Li J Y, Wang R F. Industrial atmospheric corrosion behavior of AZ91D magnesium alloy in Linfen city [J]. China Foundry Mach. Technol., 2009, 44(3): 15
11 夏兰廷, 李晋英, 王荣峰. AZ91D镁合金在临汾工业大气中的腐蚀行为 [J]. 中国铸造装备与技术, 2009, 44(3): 15
12 Gong P, Cao X J, Ning S Q, et al. Influence of different environments on atmospheric corrosion of AZ61 magnesium alloy [J]. China Surf. Eng., 2015, 28: 123
12 龚 沛, 曹学军, 宁韶奇 等. 不同环境对AZ61镁合金大气腐蚀的影响 [J]. 中国表面工程, 2015, 28: 123
13 Jiang Q T, Zhang K, Li X G, et al. Atmospheric corrosion of Mg-rare earth alloy in typical inland and marine environments [J]. Corros. Eng. Sci. Technol., 2014, 49: 651
doi: 10.1179/1743278214Y.0000000163
14 Song Y W, Liu D, Tang W N, et al. Comparison of the corrosion behavior of AM60 Mg alloy with and without self-healing coating in atmospheric environment [J]. J. Magnes. Alloy., 2021, 9: 1220
doi: 10.1016/j.jma.2020.05.018
15 Jiang Q T. The research of EW75 magnesium alloy on the atmospheric corrosion behaviors [D]. Beijing: General Research Institute for Nonferrous Metals, 2014
15 蒋全通. EW75镁合金大气腐蚀行为研究 [D]. 北京: 北京有色金属研究总院, 2014
16 Wang Y Y. Typical corrosion appearance of metals [J]. Equip. Environ. Eng., 2006, 3(4): 31
16 王曰义. 金属的典型腐蚀形貌 [J]. 装备环境工程, 2006, 3(4): 31
17 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one Year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
17 王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
18 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
18 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
19 Guo R, Lin X Y. Corrosive characteristics of dust particles [J]. Electromech. Compon., 2004, 24(1): 3
19 郭 锐, 林雪燕. 尘土颗粒的腐蚀特性 [J]. 机电元件, 2004, 24(1): 3
20 Liu Y C, He H. Analysis of chemical composition of atmospheric particles [J]. Prog. Chem., 2007, 19: 1620
20 刘永春, 贺 泓. 大气颗粒物化学组成分析 [J]. 化学进展, 2007, 19: 1620
21 Zhang D D, Zhao C Y, Wang C, et al. Atmospheric aerosols corrosion [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 91
21 张丹丹, 赵春英, 汪 川 等. 大气气溶胶腐蚀 [J]. 中国腐蚀与防护学报, 2015, 35: 91
doi: 10.11902/1005.4537.2014.083
22 Liu J H, Song Y W, Shan D Y, et al. Comparative study on corrosion behavior of cast and forged Mg-5Y-7Gd-1Nd-0.5Zr alloys [J]. Acta Metall. Sin., 2018, 54: 1141
doi: 10.11900/0412.1961.2017.00484
22 刘金辉, 宋影伟, 单大勇 等. 铸态和锻造态Mg-5Y-7Gd-1Nd-0.5Zr合金腐蚀行为对比研究 [J]. 金属学报, 2018, 54: 1141
doi: 10.11900/0412.1961.2017.00484
23 Li L, Li X G, Dong C F, et al. Research method development of corrosion under droplets during atmospheric corrosion [J]. Corros. Prot., 2010, 31: 260
23 李 磊, 李晓刚, 董超芳 等. 大气腐蚀中液滴覆盖下腐蚀现象的研究方法进展 [J]. 腐蚀与防护, 2010, 31: 260
24 Liang L H, Wang J, Jiang J. Effects of micro-droplets on atmospheric corrosion process [J]. Corros. Sci. Prot. Technol., 2010, 22: 504
24 梁利花, 王 佳, 姜 晶. 微液滴在大气腐蚀过程中的作用 [J]. 腐蚀科学与防护技术, 2010, 22: 504
25 Zhao D, Bian S S, Wang S, et al. Component characteristics and source apportionment of ambient air PM2.5 at multi-seasons in Shenyang [J]. Environ. Prot. Sci., 2021, 47: 128
25 赵 帝, 卞思思, 王 帅 等. 沈阳市分季节环境空气PM2.5组分特征分析与来源解析 [J]. 环境保护科学, 2021, 47: 128
26 Wang G Z, Ren W H, Yu X N, et al. Characteristics and sources of water-soluble ion pollution in PM2.5 in winter in Shenyang [J]. Environ. Sci., 2021, 42: 30
26 王国祯, 任万辉, 于兴娜 等. 沈阳市冬季大气PM2.5中水溶性离子污染特征及来源解析 [J]. 环境科学, 2021, 42: 30
27 Bian S S, Zhao D, Wang W K, et al. Variation characteristics and source analysis of water-soluble ions in PM2.5 during winter in Shenyang [J]. Environ. Prot. Sci., 2021, 47(3): 129
27 卞思思, 赵 帝, 王维宽 等. 沈阳冬季PM2.5中水溶性离子变化特征及来源分析 [J]. 环境保护科学, 2021, 47(3): 129
[1] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[2] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[3] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[4] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[5] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[6] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[7] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[8] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[9] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[10] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[11] 李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[12] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[13] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[14] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[15] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.