|
|
组胺改性环氧树脂及其对有机涂层性能的影响 |
曹京宜1, 李敬2, 殷文昌1, 孟凡帝2( ), 刘莉2 |
1.中国人民解放军92228部队 北京 100072 2.东北大学 沈阳材料科学国家研究中心腐蚀与防护研究部 沈阳 110016 |
|
Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings |
CAO Jingyi1, LI Jing2, YIN Wenchang1, MENG Fandi2( ), LIU Li2 |
1.Unit 92228, People's Liberation Army, Beijing 100072, China 2.Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeasten University, Shenyang 110819, China |
引用本文:
曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
Jingyi CAO,
Jing LI,
Wenchang YIN,
Fandi MENG,
Li LIU.
Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 151-158.
1 |
Hu B. China's deep-sea strategy and marine power road [J]. Frontiers, 2017, (18): 14
|
1 |
胡 波. 中国的深海战略与海洋强国建设 [J]. 人民论坛·学术前沿, 2017, (18): 12
|
2 |
Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
|
2 |
郭为民, 孙明先, 邱 日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
|
3 |
Guo W M, Li W J, Chen G Z. Corrosion testing in the deep ocean [J]. Equip. Environ. Eng., 2006, 3(1): 10
|
3 |
郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验 [J]. 装备环境工程, 2006, 3(1): 10
|
4 |
Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
|
4 |
高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
|
5 |
Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
|
5 |
王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929
doi: 10.11902/1005.4537.2022.133
|
6 |
Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
|
7 |
Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
doi: 10.1016/j.corsci.2013.04.012
|
8 |
Tian W L, Liu L, Meng F D, et al. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
doi: 10.1016/j.corsci.2014.04.038
|
9 |
Tian W L, Meng F D, Liu L, et al. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure [J]. Prog. Org. Coat., 2015, 82: 101
|
10 |
Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
|
11 |
Liu R, Liu L, Tian W L, et al. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64: 233
doi: 10.1016/j.jmst.2019.10.008
|
12 |
Zhang D Y, Su Y L. Study on the inter-coat adhesion of anti-corrosive coating matching system [J]. Shanghai Coat., 2023, 61(3): 28
|
12 |
张东亚, 苏雅丽. 防腐蚀涂层配套体系的层间附着力研究 [J]. 上海涂料, 2023, 61(3): 28
|
13 |
van Dam J P B, Abrahami S T, Yilmaz A, et al. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface [J]. Int. J. Adhes. Adhes., 2020, 96: 102450
doi: 10.1016/j.ijadhadh.2019.102450
|
14 |
Chen P, Wang Y, Li J C, et al. Adhesion and erosion properties of epoxy resin composite coatings reinforced with fly ash cenospheres and short glass fibers [J]. Prog. Org. Coat., 2018, 125: 489
|
15 |
Shen L, Li Y W, Zheng J, et al. Modified epoxy acrylate resin for photocurable temporary protective coatings [J]. Prog. Org. Coat., 2015, 89: 17
|
16 |
Zhou Y, Su L H Z, Chen J, et al. Effect of silanization pre-treatment on adhesive force and early protective properties of water-based polyurethane coating on surface of magnesium alloy [J]. Mater. Prot., 2022, 55(3): 1
|
16 |
周 勇, 苏李惠子, 陈 俊 等. 镁合金表面硅烷化预处理对水性聚氨酯涂层附着力和早期防护性能的影响 [J]. 材料保护, 2022, 55(3): 1
|
17 |
Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
|
18 |
Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
|
18 |
师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
|
19 |
Ghosh A K, Bertels E, Goderis B, et al. Optimisation of wet chemical silane deposition to improve the interfacial strength of stainless steel/epoxy [J]. Appl. Surf. Sci., 2015, 324: 134
doi: 10.1016/j.apsusc.2014.10.075
|
20 |
Sun P, Dong J, Huang H, et al. The effect of adhesion promoter on the performance of epoxy coatings on the surface of aluminum cathode plate [J]. Paint Coat. Ind., 2021, 51(12): 14
|
20 |
孙 鹏, 董 劲, 黄 惠 等. 附着力促进剂对铝阴极板表面环氧涂层性能的影响 [J]. 涂料工业, 2021, 51(12): 14
|
21 |
Cai J M, Guan L, Li Y. Effect of surface treatment on galvanic corrosion of 6061 Al-alloy and DC01 carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 281
|
21 |
蔡建敏, 关 蕾, 李 雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 281
doi: 10.11902/1005.4537.2021.048
|
22 |
Wang X H, Zhang B S, Li Z H, et al. The corrosion inhibition performance of polyaspartic acid/histamine compounds [J]. Henan Sci., 2021, 39: 1229
|
22 |
王晓慧, 张本尚, 黎振华 等. 聚天冬氨酸/组胺化合物的缓蚀性能研究 [J]. 河南科学, 2021, 39: 1229
|
23 |
Kaştaş G, K, Paşaoğlu H, MagneticKarabulut B., structural and computational studies on transition metal complexes of a neurotransmitter, histamine [J]. J. Mol. Struct., 2011, 1000: 39
doi: 10.1016/j.molstruc.2011.05.047
|
24 |
Liu X L, Shao Y W, Zhang Y J, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating-II. Effect of grinding temperature [J]. Corros. Sci., 2015, 90: 463
doi: 10.1016/j.corsci.2014.04.016
|
25 |
Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
doi: 10.1016/j.corsci.2019.108242
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|