Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 151-158     CSTR: 32134.14.1005.4537.2023.266      DOI: 10.11902/1005.4537.2023.266
  研究报告 本期目录 | 过刊浏览 |
组胺改性环氧树脂及其对有机涂层性能的影响
曹京宜1, 李敬2, 殷文昌1, 孟凡帝2(), 刘莉2
1.中国人民解放军92228部队 北京 100072
2.东北大学 沈阳材料科学国家研究中心腐蚀与防护研究部 沈阳 110016
Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings
CAO Jingyi1, LI Jing2, YIN Wenchang1, MENG Fandi2(), LIU Li2
1.Unit 92228, People's Liberation Army, Beijing 100072, China
2.Corrosion and Protection Division, Shenyang National Laboratory for Materials Science, Northeasten University, Shenyang 110819, China
引用本文:

曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
Jingyi CAO, Jing LI, Wenchang YIN, Fandi MENG, Li LIU. Histamine-modified Epoxy Resin and its Effect on Properties of Organic Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 151-158.

全文: PDF(9881 KB)   HTML
摘要: 

针对深海极端环境下涂层/金属界面结合力差的问题,通过将组胺接枝于环氧树脂E44分子链制备了能与基体金属形成化学键的活性环氧树脂 (ZA-EP)。ZA-EP中组胺杂原子可通过与Fe/Fe的氧化物的空位轨道形成共用孤对电子,促使Fe2+与树脂形成复合物,从而提高了涂层与金属界面的结合强度。相比于普通环氧涂层,添加活性树脂的涂层附着力明显提高,如添加3%ZA-EP后涂层附着力由6.02 MPa提高至15.36 MPa。另外,模拟深海交变压力环境下的服役结果显示,3%ZA-EP/EP涂层的饱和吸水率最低,循环一周期后仅为1.6%;72 h后的EIS结果表明,3%ZA-EP/EP涂层阻抗值仍保持稳定。组胺改性使得环氧涂层/金属界面形成化学键合作用,增强了涂层的附着力,因此ZA-EP/EP涂层具有更加优异的防护能力。

关键词 组胺环氧树脂改性附着力    
Abstract

To solve the problem of poor adhesion of the coating/metal interface in deep-sea environments, active epoxy resin (ZA-EP) was prepared by grafting histamine onto the epoxy resin E44 molecular chain, which can facilitate the formation of chemical bonds with metal substrate. Histamine heteroatoms in ZA-EP can form a shared lone pair electron with the vacant orbital of iron/iron oxide, which can promote the formation of the complex of Fe2+ ions with the resin, thus improving the interfacial bonding strength between the coating and the metal substrate. Compared with the ordinary epoxy coating, the adhesion of the coating containing active resin was significantly improved: for example, the adhesion of epoxy coating increased from 6.02 MPa to 15.36 MPa after the addition of 3% ZA-EP. In addition, the test results in the simulated deep-sea water under alternating pressure show that the saturation water absorption of the 3% ZA-EP/EP coating is the lowest, only 1.6% after one cycle test in 3.5%NaCl solution (by high static pressure 3.5 MPa for 12 h + constant pressure 0.1 MPa for 12 h). The EIS results after 3 cycle test (72 h) showed that the impedance of the 3%ZA-EP/EP coating remained stable. In other words, histamine modification may facilitate the formation of a chemical bond at the coating/metal interface, enhances the adhesion of the coating, thereby, the ZA-EP/EP coating has a good protective performance.

Key wordshistamine    epoxy resin modification    adhesion
收稿日期: 2023-08-24      32134.14.1005.4537.2023.266
ZTFLH:  TG174  
基金资助:国家自然科学基金(U20A20233)
通讯作者: 孟凡帝,E-mail: fandimeng@mail.neu.edu.cn,研究方向为海洋环境材料的腐蚀与防护
Corresponding author: MENG Fandi, E-mail: fandimeng@mail.neu.edu.cn
作者简介: 曹京宜,女,1972年生,研究员
图1  活性树脂ZA-EP合成示意图
图2  ZA、ZA-EP和EP的红外光谱
图3  不同涂层的干态和湿态附着力
图4  不同涂层在干态附着力测试后的表面形貌
图5  不同涂层在交变压力环境下的吸水动力学曲线
图6  不同涂层在交变压力下服役不同时间后的Nyquist图
图7  EP涂层和3% ZA-EP涂层在交变压力下服役不同时间后的涂层电阻Rc及电荷转移电阻Rt
图8  去除涂层后的金属表面形貌
图9  3% ZA-EP涂层表面的EDS面分析结果
图10  ZA-EP/EP涂层/金属界面形成化学键合机理示意图
1 Hu B. China's deep-sea strategy and marine power road [J]. Frontiers, 2017, (18): 14
1 胡 波. 中国的深海战略与海洋强国建设 [J]. 人民论坛·学术前沿, 2017, (18): 12
2 Guo W M, Sun M X, Qiu R, et al. Research progress on corrosion and aging of materials in deep-sea environment [J]. Corros. Sci. Prot. Technol., 2017, 29: 313
2 郭为民, 孙明先, 邱 日 等. 材料深海自然环境腐蚀实验研究进展 [J]. 腐蚀科学与防护技术, 2017, 29: 313
3 Guo W M, Li W J, Chen G Z. Corrosion testing in the deep ocean [J]. Equip. Environ. Eng., 2006, 3(1): 10
3 郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验 [J]. 装备环境工程, 2006, 3(1): 10
4 Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
4 高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39
doi: 10.11902/1005.4537.2021.034
5 Wang T Y, Zhang Z G, Lu W Z, et al. Effect of alternating pressure on electrochemical behavior of solvent-free epoxy coating in simulated ultra-deep sea environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 929
5 王腾宇, 张正贵, 陆卫中 等. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为 [J]. 中国腐蚀与防护学报, 2022, 42: 929
doi: 10.11902/1005.4537.2022.133
6 Liu L, Cui Y, Li Y, et al. Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure [J]. Electrochim. Acta, 2012, 62: 42
doi: 10.1016/j.electacta.2011.11.067
7 Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
doi: 10.1016/j.corsci.2013.04.012
8 Tian W L, Liu L, Meng F D, et al. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
doi: 10.1016/j.corsci.2014.04.038
9 Tian W L, Meng F D, Liu L, et al. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure [J]. Prog. Org. Coat., 2015, 82: 101
10 Liu R, Liu L, Meng F D, et al. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure [J]. Prog. Org. Coat., 2018, 123: 168
11 Liu R, Liu L, Tian W L, et al. Finite element analysis of effect of interfacial bubbles on performance of epoxy coatings under alternating hydrostatic pressure [J]. J. Mater. Sci. Technol., 2021, 64: 233
doi: 10.1016/j.jmst.2019.10.008
12 Zhang D Y, Su Y L. Study on the inter-coat adhesion of anti-corrosive coating matching system [J]. Shanghai Coat., 2023, 61(3): 28
12 张东亚, 苏雅丽. 防腐蚀涂层配套体系的层间附着力研究 [J]. 上海涂料, 2023, 61(3): 28
13 van Dam J P B, Abrahami S T, Yilmaz A, et al. Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface [J]. Int. J. Adhes. Adhes., 2020, 96: 102450
doi: 10.1016/j.ijadhadh.2019.102450
14 Chen P, Wang Y, Li J C, et al. Adhesion and erosion properties of epoxy resin composite coatings reinforced with fly ash cenospheres and short glass fibers [J]. Prog. Org. Coat., 2018, 125: 489
15 Shen L, Li Y W, Zheng J, et al. Modified epoxy acrylate resin for photocurable temporary protective coatings [J]. Prog. Org. Coat., 2015, 89: 17
16 Zhou Y, Su L H Z, Chen J, et al. Effect of silanization pre-treatment on adhesive force and early protective properties of water-based polyurethane coating on surface of magnesium alloy [J]. Mater. Prot., 2022, 55(3): 1
16 周 勇, 苏李惠子, 陈 俊 等. 镁合金表面硅烷化预处理对水性聚氨酯涂层附着力和早期防护性能的影响 [J]. 材料保护, 2022, 55(3): 1
17 Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
18 Shi C, Shao Y W, Xiong Y, et al. Influence of silane coupling agent modified zinc phosphate on anticorrosion property of epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 38
18 师 超, 邵亚薇, 熊 义 等. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 38
19 Ghosh A K, Bertels E, Goderis B, et al. Optimisation of wet chemical silane deposition to improve the interfacial strength of stainless steel/epoxy [J]. Appl. Surf. Sci., 2015, 324: 134
doi: 10.1016/j.apsusc.2014.10.075
20 Sun P, Dong J, Huang H, et al. The effect of adhesion promoter on the performance of epoxy coatings on the surface of aluminum cathode plate [J]. Paint Coat. Ind., 2021, 51(12): 14
20 孙 鹏, 董 劲, 黄 惠 等. 附着力促进剂对铝阴极板表面环氧涂层性能的影响 [J]. 涂料工业, 2021, 51(12): 14
21 Cai J M, Guan L, Li Y. Effect of surface treatment on galvanic corrosion of 6061 Al-alloy and DC01 carbon steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 281
21 蔡建敏, 关 蕾, 李 雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 281
doi: 10.11902/1005.4537.2021.048
22 Wang X H, Zhang B S, Li Z H, et al. The corrosion inhibition performance of polyaspartic acid/histamine compounds [J]. Henan Sci., 2021, 39: 1229
22 王晓慧, 张本尚, 黎振华 等. 聚天冬氨酸/组胺化合物的缓蚀性能研究 [J]. 河南科学, 2021, 39: 1229
23 Kaştaş G, K, Paşaoğlu H, MagneticKarabulut B., structural and computational studies on transition metal complexes of a neurotransmitter, histamine [J]. J. Mol. Struct., 2011, 1000: 39
doi: 10.1016/j.molstruc.2011.05.047
24 Liu X L, Shao Y W, Zhang Y J, et al. Using high-temperature mechanochemistry treatment to modify iron oxide and improve the corrosion performance of epoxy coating-II. Effect of grinding temperature [J]. Corros. Sci., 2015, 90: 463
doi: 10.1016/j.corsci.2014.04.016
25 Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
doi: 10.1016/j.corsci.2019.108242
[1] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[2] 张娟,刘自强,冯涛,温世峰,陈瑞卿. 碳纳米管含量对环氧树脂涂层性能的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[3] 周兵, 唐囡, 张颖君, 毛亮, 王艳秋, 邵亚薇, 孟国哲. 镀锌钢表面高附着环氧清漆的研究[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[4] 钟萍,李健. 聚脲涂层体系在混凝土表面的附着性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 348-355.