Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 535-543     CSTR: 32134.14.1005.4537.2022.201      DOI: 10.11902/1005.4537.2022.201
  研究报告 本期目录 | 过刊浏览 |
安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律
李乐民1, 张洁2, 卞亚飞1, 缪春辉2, 陈国宏2, 汤文明1()
1.合肥工业大学材料科学与工程学院 合肥 230009
2.国网安徽省电力有限公司电力科学研究院 合肥 230601
Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province
LI Lemin1, ZHANG Jie2, BIAN Yafei1, MIAO Chunhui2, CHEN Guohong2, TANG Wenming1()
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.Electric Power Research Institute, Anhui Electric Power Co. Ltd., State Grid, Hefei 230601, China
全文: PDF(6087 KB)   HTML
摘要: 

针对在安徽省内代表性变电站站点自然环境下曝露1和3 a后的Q235、40Cr钢试样,开展腐蚀产物、腐蚀层形貌的研究,探讨其大气腐蚀机理。采用失重法获取Q235和40Cr钢试样的腐蚀速率,结合安徽省各相关地市的主要环境因素数据,再采用灰色关联分析方法,研究主要环境因素对1和3 a期Q235、40Cr钢试样大气腐蚀的影响规律。结果表明,Q235和40Cr钢试样大气腐蚀产物为FeOOH、Fe3O4、Fe(OH)3及FeSO4;腐蚀层表面密布着棉花球状的α-FeOOH,其间分布着片状的γ-FeOOH,腐蚀层结构较致密,但发生层状开裂。安徽省内Q235和40Cr钢试样大气腐蚀等级均在C2和C3等级,两者无明显差别。影响Q235和40Cr钢试样1 a期大气腐蚀的环境因素关联度排序为:NO2>温度>SO2>相对湿度>O3;随着曝露时间延长至3 a,该关联度排序改变为:SO2、温度>NO2>相对湿度>O3

关键词 电网设备钢材大气曝露试验大气腐蚀腐蚀特性灰色关联分析    
Abstract

Aimming at the Q235 and 40Cr steel samples exposed in air for 1 and 3 a in typical substations in Anhui province, the products and morphologies of their corrosion layers were investigated, and further the corrosion mechanisms were clarified. The corrosion rate of the steel samples was obtained via the mass-loss method, and then the grey correlation analysis was executed to determine the influences of main environmental factors on atmospheric corrosions of the Q235 and 40Cr steel samples exposed for 1 and 3 a, respectively, through combining with the main environmental factor data of the relevant cities in Anhui province. The results showed that the atmospheric corrosion products of the Q235 and 40Cr steel samples were FeOOH, Fe3O4, Fe(OH)3 and FeSO4. The corrosion layer is covered by cotton ball-like α-FeOOH and flaky γ-FeOOH. It has a dense structure, but laminar cracking takes place. The atmospheric corrosion grades of the Q235 and 40Cr steels in Anhui province have no significant difference, and both are of C2 and C3. The correlation degree sequence of environmental factors affecting atmospheric corrosion of the Q235 and 40Cr samples exposed for 1 a is: NO2> temperature >SO2> relative humidity >O3. With the exposure time prolonging to 3 a, it is changed to be: SO2, temperature >NO2> relative humidity >O3.

Key wordsgrid equipment steel    atmospheric exposure test    atmospheric corrosion    corrosion characteristic    gray relation analysis
收稿日期: 2022-06-21      32134.14.1005.4537.2022.201
ZTFLH:  TG174  
基金资助:国网安徽省电力有限公司科技项目(B1120521001U)
通讯作者: 汤文明,E-mail:wmtang69@126.com,研究方向为材料失效与可靠性评估
Corresponding author: TANG Wenming, E-mail: wmtang69@126.com
作者简介: 李乐民,男,1998年生,硕士生

引用本文:

李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 535-543.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.201      或      https://www.jcscp.org/CN/Y2023/V43/I3/535

CitySubstationEnvironmentCitySubstationEnvironment
AnqingH1Industrial pollutionFuyangK1Village
H4VillageK3City
H9CityK4Village
H12VillageK8Vity
H13VillageT14Village
ChizhouR1Industrial pollutionMaanshanE2Industrial pollution
R5CityE3City
R6CityE6Village
R7VillageE7Industrial pollution
T25VillageE8Industrial pollution
HuainanD1VillageTonglingG2Industrial pollution
D4CityG3Industrial pollution
D6CityG4Industrial pollution
D7VillageG7Industrial pollution
T28VillageT2Village
表1  大气曝露试验试样投样点及其特征环境
CityExposure timeAverage temperature / ℃Average humidity / %NO2 / µg·m-3O3 / µg·m-3SO2 / µg·m-3
Anqing1 a16.776.027.8170.48.8
3 a16.975.326.9124.78.4
Chizhou1 a16.581.032.7156.09.9
3 a16.979.028.9115.09.3
Fuyang1 a15.375.028.2156.76.6
3 a15.872.028.0120.86.4
Huainan1 a15.576.027.9169.613.6
3 a15.774.327.6126.111.6
Maanshan1 a15.977.035.1166.512.5
3 a16.474.034.4121.311.2
Tongling1 a16.780.035.4142.414.8
3 a16.978.035.8105.613.8
表2  安徽省相关地市曝露实验时间段内的空气质量数据
图1  大气腐蚀3 a后不同站点Q235和40Cr钢试样腐蚀产物XRD谱
图2  大气腐蚀1 a后R1站点Q235和40Cr钢试样表面SEM形貌
图3  大气腐蚀3 a后R1站点Q235和40Cr钢试样表面SEM形貌和EDS谱
图4  R1站点Q235和40Cr钢试样大气腐蚀3 a后的腐蚀层截面SEM形貌及EDS谱
图5  碳钢大气腐蚀机制示意图
CityQ235 steel40Cr steel
Average corrosion rate / μm·a-1bGradeAverage corrosion rate / μm·a-1bGrade
1 a3 a1 a3 a
Anqing22.9013.110.49C223.1112.360.43C2
Chizhou27.4913.360.34C325.9313.150.38C3
Fuyang25.4112.900.38C324.8212.720.39C3
Huainan25.8412.230.32C325.4112.660.37C3
Maanshan29.1915.150.40C325.8213.610.42C3
Tongling28.2716.080.49C330.3215.060.36C3
表3  安徽省相关地市Q235和40Cr钢试样的腐蚀速率及等级
图6  安徽省相关地市Q235和40Cr钢试样大气腐蚀1和3 a的灰色关联系数曲线
Environmental factor / iQ235 steel40Cr steel
1 a3 a1 a3 a
riRankriRankriRankriRank
Average temperature / ℃0.90120.96710.91320.9652
Average humidity / %0.60840.48640.60840.4864
NO2 / µg·m-30.96710.78530.96510.7853
SO2 / µg·m-30.85030.95120.86130.9661
O3 / µg·m-30.36650.35650.36750.3575
表4  Q235和40Cr钢试样大气腐蚀1和3 a的灰色关联分析结果
1 Pan Y X, Wang M, Wang Z G, et al. Influence of atmospheric corrosive environment on corrosion of power transmission and transformation equipment in Sichuan power grid [J]. Mater. Prot., 2018, 51(4): 110
1 潘玉霞, 王 玫, 王志高 等. 大气腐蚀环境对四川电网输变电设备腐蚀的影响研究 [J]. 材料保护, 2018, 51(4): 110
2 Chen Y, Xu L M, Yao N N, et al. Atmospheric corrosion and protection of steel components for transmission and distribution projects [J]. North China Electr. Power, 2014, (12): 10
2 陈 云, 徐利民, 药宁娜 等. 输变电钢构件的大气腐蚀与防护 [J]. 华北电力技术, 2014, (12): 10
3 Wang P, Sun X L, Ma D W, et al. Investigation and analysis of atmospheric corrosion of transmission and transformation equipment [J]. Corros. Sci. Prot. Technol., 2012, 24: 525
3 王 平, 孙心利, 马东伟 等. 输变电设备大气腐蚀情况调查与分析 [J]. 腐蚀科学与防护技术, 2012, 24: 525
4 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
4 王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
5 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
5 王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
6 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
6 梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
7 Shiri M, Rezakhani D. Estimated and stationary atmospheric corrosion rate of carbon steel, galvanized steel, copper and aluminum in Iran [J]. Metall. Mater. Trans., 2020, 51A: 342
8 Wang Z G, Tian Q Q, Geng Z, et al. Corrosion investigation and protection measures of power transmission and transformation equipment in Sichuan power grid [J]. Corros. Prot., 2021, 42(3): 34
8 王志高, 田倩倩, 耿 植 等. 四川电网输变电设备的腐蚀情况调查及防护措施 [J]. 腐蚀与防护, 2021, 42(3): 34
9 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
10 Liu S F, Cai H, Yang Y J, et al. Advance in grey incidence analysis modelling [J]. Syst. Eng. Theory Pract., 2013, 33: 2041
10 刘思峰, 蔡 华, 杨英杰 等. 灰色关联分析模型研究进展 [J]. 系统工程理论与实践, 2013, 33: 2041
doi: 10.12011/1000-6788(2013)8-2041
11 Ma Y Y. Study on corrosion behavior and relationship between environmental factors of bronze cultural relics [D]. Shanghai: East China University of Science and Technology, 2021
11 马圆圆. 环境因素对青铜质文物腐蚀行为的影响及关联性分析 [D]. 上海: 华东理工大学, 2021
12 Wang R F, Wang G C, Su W G, et al. Application of grey relational analysis to environmental factors of atmospheric corrosion of aerospace aluminum alloys [J]. Equip. Environ. Eng., 2013, 10(3): 26
12 王瑞峰, 王国才, 苏维国 等. 航空铝合金材料大气腐蚀环境因子灰色关联分析 [J]. 装备环境工程, 2013, 10(3): 26
13 Cao X L, Deng H D, Lan W. Use of the grey relational analysis method to determine the important environmental factors that affect the atmospheric corrosion of Q235 carbon steel [J]. Anti-Corros. Methods Mater., 2015, 62: 7
doi: 10.1108/ACMM-10-2013-1308
14 Liu K J. Classification and evaluation of environment of atmospheric corrosion [J]. Total Corros. Control, 2015, 29(10): 26
14 刘凯吉. 大气腐蚀环境的分类及腐蚀性评定 [J]. 全面腐蚀控制, 2015, 29(10): 26
15 Deng J L. Control problems of grey systems [J]. Syst. Control Lett., 1982, 1: 288
doi: 10.1016/S0167-6911(82)80025-X
16 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
16 唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
doi: 10.11902/1005.4537.2020.039
17 Feng Y L, Bai Z H, Chen L H, et al. Correlation of indoor accelerated corrosion with outdoor exposure for Corten-A weathering steel in polluted marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 519
17 冯亚丽, 白子恒, 陈利红 等. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 519
doi: 10.11902/1005.4537.2019.229
18 De la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
19 Ding G Q, Yang W G, Zhang B, et al. Non-uniform corrosion behavior of steels in natural atmospheric environment [J]. Corros. Prot., 2014, 35: 541
19 丁国清, 杨万国, 张 波 等. 钢在自然大气环境中的不均匀腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 541
20 Gao Y, Huang Y H, Zheng Z J, et al. Atmospheric corrosion behavior of Q235 steel exposed on transmission tower sites of Guangdong province [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(7): 39
20 高 岩, 黄殷辉, 郑志军 等. Q235钢在广东省输电杆塔现场的大气腐蚀行为 [J]. 华南理工大学学报 (自然科学版), 2018, 46(7): 39
21 Cao G W, Liu Y W, Zhang D D, et al. Corrosion behavior of Q235 and Q345 carbon steel in Hongyanhe atmosphere [J]. Corros. Prot., 2018, 39: 24
21 曹公望, 刘雨薇, 张丹丹 等. Q235和Q345钢在红沿河大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 24
22 Xiao K, Dong C F, Li X G, et al. Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel [J]. J. Iron Steel Res. Int., 2008, 15: 42
23 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
24 Townsend H E. Effects of alloying elements on the corrosion of steel in industrial atmospheres [J]. Corrosion, 2001, 57: 497
doi: 10.5006/1.3290374
25 Mao H Y, Cai Q W, Wu H B, et al. Effect of alloy element and carbon content on corrosion behavior of E36 ship plate steel [J]. Corros. Prot., 2013, 34: 499
25 毛红艳, 蔡庆伍, 武会宾 等. 合金元素和碳含量对E36船板钢腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34: 499
26 Xing W J, Ding H F, Du X D, et al. Effect of carbon content on structure and corrosion property of low carbon high alloy steel [J]. Hot Work. Technol., 2006, 35(14): 35
26 邢文静, 丁厚福, 杜晓东 等. 碳含量对低碳高合金钢组织及耐腐蚀行为的影响 [J]. 热加工工艺, 2006, 35(14): 35
27 Schindelholz E, Kelly R G. Wetting phenomena and time of wetness in atmospheric corrosion: a review [J]. Corros. Rev., 2012, 30: 135
28 Wang H T, Han E-H, Ke W. Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 278
28 王海涛, 韩恩厚, 柯 伟. 碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析 [J]. 腐蚀科学与防护技术, 2006, 18: 278
[1] 汪洋, 刘元海, 慕仙莲, 刘淼然, 王俊, 李秋平, 陈川. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[2] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[3] 周梦鑫, 吴军, 樊志彬, 周学杰, 陈昊. 大气腐蚀在线监测技术研究现状与展望[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[4] 樊志彬, 李辛庚, 王晓明, 王倩. 区域性大气腐蚀图绘制技术研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
[5] 夏晓健, 万芯瑗, 高燕, 王启伟, 严康骅, 陈云翔, 洪毅成, 张俊喜. 1050铝合金在通电工况下大气腐蚀的腐蚀特征[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[6] 范益, 杨文秀, 王军, 蔡佳兴, 马宏驰. Q690qE桥梁钢在模拟滨海工业环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[7] 马小泽, 孟令东, 曹祥康, 肖松, 董泽华. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[8] 黄赵鑫, 朱志平, 周攀, 江源康, 贺明鹏, 王正刚. 换流站阀冷系统中丙二醇防冻液的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[9] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[10] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[11] 夏晓健, 蔡建宾, 林德源, 万芯瑗, 李扬森, 张标华, 陈云翔, 韩纪层, 邹智敏, 姜春海. 沿海变电站设备腐蚀状况及其腐蚀机理与防护[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[12] 王军, 陈军君, 谢亿, 徐松, 刘兰兰, 吴堂清, 尹付成. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[13] 陈文娟, 方莲, 潘刚. O3/SO2复合大气环境中Q235B钢的腐蚀演化特性[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[14] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[15] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.