|
|
纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化 |
张勤1, 梁涛沙2, 王文2, 赵朗朗1, 姜岳峰1( ) |
1.中核四0四有限公司 兰州 732850 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃ |
ZHANG Qin1, LIANG Taosha2, WANG Wen2, ZHAO Langlang1, JIANG Yuefeng1( ) |
1.The 404 Company Limited, China National Nuclear Corporation, Lanzhou 732850, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张勤, 梁涛沙, 王文, 赵朗朗, 姜岳峰. 纳米晶Ni-12Cr合金800 ℃高温氧化动力学和氧化膜结构演化[J]. 中国腐蚀与防护学报, 2022, 42(5): 733-742.
Qin ZHANG,
Taosha LIANG,
Wen WANG,
Langlang ZHAO,
Yuefeng JIANG.
Oxidation Kinetics and Microstructure Evolution of Nanocrystalline Ni-12Cr Alloy at 800 ℃. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 733-742.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2022.052
或
https://www.jcscp.org/CN/Y2022/V42/I5/733
|
1 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Oxford: Elsevier, 2008: 185
|
2 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
|
3 |
Wang F H. The effect of nanocrystallization on the selective oxidation and adhesion of Al2O3 scales [J]. Oxid. Met., 1997, 48: 215
doi: 10.1007/BF01670500
|
4 |
Hart E W. On the role of dislocations in bulk diffusion [J]. Acta Metall., 1957, 5: 597
doi: 10.1016/0001-6160(57)90127-X
|
5 |
Merz M D. The oxidation resistance of fine-grained sputter-deposited 304 stainless steel [J]. Metall. Mater. Trans., 1979, 10A: 71
|
6 |
Baer D R, Merz M D. Differences in oxides on large-and small-grained 304 stainless steel [J]. Metall. Mater. Trans., 1980, 11A: 1973
|
7 |
Yurek G J, Eisen D, Garratt-Reed A. Oxidation behavior of a fine-grained rapidly solidified 18-8 stainless steel [J]. Metall. Mater. Trans., 1982, 13A: 473
|
8 |
Wang F H. Oxidation resistance of sputtered Ni3(AlCr) nanocrystalline coating [J]. Oxid. Met., 1997, 47: 247
doi: 10.1007/BF01668513
|
9 |
Liu Z Y, Gao W, Dahm K L, et al. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater., 1998, 46: 1691
doi: 10.1016/S1359-6454(97)00346-7
|
10 |
Fu G Y, Liu Q, Long Y Y, et al. Effect of grain-size reduction on oxidation behavior of Fe-Cr and Ni-Cr alloys [J]. Corros. Sci. Prot. Technol., 2005, 17: 384
|
10 |
付广艳, 刘群, 龙媛媛 等. 晶粒细化对Fe-Cr、Ni-Cr合金氧化行为的影响 [J]. 腐蚀科学与防护技术, 2005, 17: 384
|
11 |
Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: A review [J]. Corros. Commun., 2021, 1: 58
doi: 10.1016/j.corcom.2021.06.003
|
12 |
Kursumovic A, Hühne R, Tomov R, et al. Investigation of the growth and stability of (100)[001] NiO films grown by thermal oxidation of textured (100)[001] Ni tapes for coated conductor applications during oxygen exposure from 700 to 1400 ℃ [J]. Acta Mater., 2003, 51: 3759
doi: 10.1016/S1359-6454(03)00190-3
|
13 |
Peng X. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites [J]. Nanoscale, 2010, 2: 262
doi: 10.1039/B9NR00118B
|
14 |
Lu K, Zhou F. Recent research progress on nanocrystalline materials [J]. Acta Metall. Sin., 1997, 33: 99
|
14 |
卢柯, 周飞. 纳米晶体材料的研究现状 [J]. 金属学报, 1997, 33: 99
|
15 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
|
16 |
Xu W, Zhang B, Li X Y, et al. Suppressing atomic diffusion with the Schwarz crystal structure in supersaturated Al-Mg alloys [J]. Science, 2021, 373: 683
doi: 10.1126/science.abh0700
pmid: 34353952
|
17 |
Liu Z Y, Gao W, Dahm K, et al. The effect of coating grain size on the selective oxidation behaviour of Ni-Cr-Al alloy [J]. Scr. Mater., 1997, 37: 1551
doi: 10.1016/S1359-6462(97)00291-1
|
18 |
Quan C, He Y D, Zhang J. High temperature oxidation behavior of a novel Ni-Cr binary alloy coating prepared by cathode plasma electrolytic deposition [J]. Surf. Coat. Technol., 2016, 292: 11
doi: 10.1016/j.surfcoat.2016.03.012
|
19 |
Calvarin G, Molins R, Huntz A M. Oxidation mechanism of Ni-20Cr foils and its relation to the oxide-scale microstructure [J]. Oxid. Met., 2000, 53: 25
doi: 10.1023/A:1004578513020
|
20 |
Yu X X, Gulec A, Andolina C M, et al. In situ observations of early stage oxidation of Ni-Cr and Ni-Cr-Mo alloys [J]. Corrosion, 2018, 74: 939
doi: 10.5006/2807
|
21 |
Wagner C. Types of reactions in the oxidation of alloys [J]. J. Electrochem. Soc., 1959, 63: 771
|
22 |
Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
doi: 10.1016/0001-6160(61)90103-1
|
23 |
Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
doi: 10.1149/2.1021706jes
|
24 |
Atkinson H V. A review of the role of short-circuit diffusion in the oxidation of nickel, chromium, and nickel-chromium alloys [J]. Oxid. Met., 1985, 24: 177
doi: 10.1007/BF00664231
|
25 |
Xie Y, Huang Y C, Li Y H, et al. A novel method to promote selective oxidation of Ni-Cr alloys: Surface spreading α-Al2O3 nanoparticles [J]. Corros. Sci., 2021, 190: 109717
doi: 10.1016/j.corsci.2021.109717
|
26 |
Andreev Y Y, Shumkin A A. A new theoretical approach to the thermodynamic calculation of high-temperature oxidation of Ni-Cr alloys [J]. Prot. Met., 2006, 42: 221
doi: 10.1134/S0033173206030039
|
27 |
Wang Z B, Lu K. Diffusion and surface alloying of gradient nanostructured metals [J]. Beilstein J. Nanotechnol., 2017, 8: 547
doi: 10.3762/bjnano.8.59
|
28 |
Peng X, Wang F H. High temperature corrosion of nanocrystalline metallic materials [J]. Acta Metall. Sin., 2014, 50: 202
|
28 |
彭晓, 王福会. 纳米晶金属材料的高温腐蚀行为 [J]. 金属学报, 2014, 50: 202
doi: 10.3724/SP.J.1037.2013.00604
|
29 |
Balluffi R W. Grain boundary diffusion mechanisms in metals [J]. Metall. Mater. Trans., 1982, 13B: 527
|
30 |
Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33: 223
doi: 10.1016/0079-6425(89)90001-7
|
31 |
Douglass D L, Armijo J S. The effect of silicon and manganese on the oxidation mechanism of Ni-20 Cr [J]. Oxid. Met., 1970, 2: 207
doi: 10.1007/BF00603657
|
32 |
Hampikian J M, Potter D I. The effects of yttrium ion implantation on the oxidation of nickel-chromium alloys. II. Oxidation of yttrium implanted Ni-20Cr [J]. Oxid. Met., 1992, 38: 139
doi: 10.1007/BF00665049
|
33 |
Halem Z, Halem N, Abrudeanu M, et al. Transport properties of Al or Cr-doped nickel oxide relevant to the thermal oxidation of dilute Ni-Al and Ni-Cr alloys [J]. Solid State Ionics, 2016, 297: 13
doi: 10.1016/j.ssi.2016.09.023
|
34 |
Wood G C, Hodgkiess T. Mechanism of oxidation of dilute nickel-chromium alloys [J]. Nature, 1966, 211: 1358
doi: 10.1038/2111358a0
|
35 |
Zhao Y, Yang G X, Yuan C, et al. Isothermal oxidation behavior of a cast Ni-base superalloy K447 [J]. Corros. Sci. Prot. Technol., 2007, 19: 1
|
35 |
赵越, 杨功显, 袁超 等. 铸造镍基高温合金K447的高温氧化行为 [J]. 腐蚀科学与防护技术, 2007, 19: 1
|
36 |
Zhang J, Huang J P, Shang G F, et al. Effect of surface roughness on oxidation behavior of Ni-Cr-Al alloy at high temperatures [J]. Corros. Sci. Prot. Technol., 2016, 28: 531
|
36 |
张俊, 黄嘉鹏, 尚根峰 等. 不同表面粗糙度镍铬铝合金的高温氧化行为 [J]. 腐蚀科学与防护技术, 2016, 28: 531
|
37 |
Quadakkers W J, Naumenko D, Wessel E, et al. Growth rates of alumina scales on Fe-Cr-Al alloys [J]. Oxid. Met., 2004, 61: 17
doi: 10.1023/B:OXID.0000016274.78642.ae
|
38 |
Rybicki G C, Smialek J L. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+Zr [J]. Oxid. Met., 1989, 31: 275
doi: 10.1007/BF00846690
|
39 |
Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 82
|
39 |
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 82
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|