Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 819-825    DOI: 10.11902/1005.4537.2021.253
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响
张媛1, 张弦1(), 陈思雨1, 李腾2(), 刘静1, 吴开明1
1.武汉科技大学 耐火材料与冶金省部共建国家重点实验室 高性能钢铁材料及其应用省部共建协同创新中心 冶金工业过程系统科学湖北省重点实验室 武汉 430081
2.中国原子能科学研究院放射化学研究所 北京 102413
Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel
ZHANG Yuan1, ZHANG Xian1(), CHEN Siyu1, LI Teng2(), LIU Jing1, WU Kaiming1
1.Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Collaborative Innovation Center for Advanced Steels, The State Key Laboratory of Refractory Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Department of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China
全文: PDF(3054 KB)   HTML
摘要: 

利用电化学方法测量316L不锈钢在不同浓度磷酸溶液中的极化曲线、电化学阻抗、恒电位极化曲线和M-S曲线,利用XPS技术对钝化膜的成分进行表征。结果表明,316L不锈钢在空气中和磷酸溶液中形成的钝化膜均具有双层结构,内层主要含Cr2O3,在空气中形成的钝化膜外层为Fe的氧化物和氢氧化物,在磷酸溶液中形成的钝化膜外层则为Fe的氧化物和磷酸盐。当磷酸浓度小于1 mol/L时,316L不锈钢表面钝化膜受到的破坏较小,其依旧维持较好的耐腐蚀性,随着腐蚀时间的延长,钝化膜会由致密变疏松;当磷酸浓度大于1 mol/L时,表面钝化膜受到的破坏较为严重,耐腐蚀性明显降低,钝化膜变薄且疏松,但是难溶腐蚀产物的生成相对减缓了钝化膜被破坏的进程。

关键词 磷酸316L不锈钢钝化膜耐腐蚀性    
Abstract

These results show that the passivation films formed on 316L stainless steel in air and phosphoric acid solution have a double-layered structure. The inner layer mainly contained Cr2O3. The outer layer of passive film formed in air was composed of Fe oxides and hydroxides. The outer layer of the passive film formed in phosphoric acid solutions was Fe oxide and phosphate. When the phosphoric acid concentration was less than 1 mol/L, the passive film of 316L stainless steel is less damaged, maintaining good corrosion resistance. However, as corrosion time extended, the passivation film would change from compact to loose. When the phosphoric acid concentration was greater than 1 mol/L, the passive film was seriously damaged, becoming thin and loosened, so that the corrosion resistance was obviously reduced. The formation of insoluble corrosion products relatively slows down the process of passive film damage.

Key wordsphosphoric acid    316L stainless steel    passive film    corrosion resistance
收稿日期: 2021-09-22     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51601138);国家自然科学基金(51601137)
通讯作者: 张弦,李腾     E-mail: xianzhang@wust.edu.cn;liteng@ciae.ac.cn;liteng@wust.edu.cn
Corresponding author: ZHANG Xian,LI Teng     E-mail: xianzhang@wust.edu.cn;liteng@ciae.ac.cn;liteng@wust.edu.cn
作者简介: 张媛,女,1997年生,硕士生

引用本文:

张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
Yuan ZHANG, Xian ZHANG, Siyu CHEN, Teng LI, Jing LIU, Kaiming WU. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 819-825.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.253      或      https://www.jcscp.org/CN/Y2022/V42/I5/819

图1  316L不锈钢在不同浓度磷酸溶液中的动电位极化曲线
C / mol·L-1Ipass / μA·cm-2Etran / V
0.13.4741.245
0.26.8851.233
0.53.4741.256
18.1631.262
214.8701.295
表1  316L不锈钢在不同浓度磷酸溶液中的维钝电流密度 (Ipass) 和过钝化电位 (Etran)
图2  316L不锈钢在不同浓度磷酸溶液中的电化学阻抗谱及其等效电路
Cmol·L-1RsΩ·cm2R1Ω·cm2C1μF·cm-2R2Ω·cm2C2μF·cm-2RpΩ·cm2
0.119.1514789069.3423435520171325
0.211.026548582.502526059290745
0.54.2954975781.491867411268431
12.252701090.361764811444658
21.6941106193.18966027.2320721
表2  阻抗数据的拟合结果
图3  316L不锈钢在不同浓度磷酸溶液中的恒电位极化曲线
图4  316 L不锈钢在不同浓度磷酸溶液中的Mott-Schottky曲线
C / mol·L-1NA / 1019·cm-3ND / 1019·cm-3
0.11.472.06
0.219.9624.60
0.51156.33345.00
1989.51235.79
2973.55276.95
表3  316L不锈钢在不同浓度磷酸中形成的表面钝化膜中的载流子密度
图5  316L不锈钢在空气中形成的表面钝化膜中元素 (O、Fe、Cr) 原子比随溅射时间的变化
图6  316 L不锈钢在空气中形成的钝化膜的XPS谱
图7  316L不锈钢在磷酸溶液中形成的钝化膜的XPS谱
1 Prabakaran K, Rajeswari S. Electrochemical, SEM and XPS investigations on phosphoric acid treated surgical grade type 316L SS for biomedical applications [J]. J. Appl. Electrochem., 2009, 39: 887
doi: 10.1007/s10800-008-9738-5
2 Benabdellah M, Hammouti B. Corrosion behaviour of steel in concentrated phosphoric acid solutions [J]. Appl. Surf. Sci., 2005, 252: 1657
doi: 10.1016/j.apsusc.2005.03.191
3 Sánchez-Tovar R, Montañés M T, García-Antón J, et al. Corrosion behaviour of micro-plasma arc welded stainless steels in H3PO4 under flowing conditions at different temperatures [J]. Corros. Sci., 2011, 53: 1237
doi: 10.1016/j.corsci.2010.12.017
4 Sánchez-Tovar R, Montañés M T, García-Antón J, et al. Influence of temperature and hydrodynamic conditions on the corrosion behavior of AISI 316L stainless steel in pure and polluted H3PO4: application of the response surface methodology [J]. Mater. Chem. Phys., 2012, 133: 289
doi: 10.1016/j.matchemphys.2012.01.024
5 Bellaouchou A, Guenbour A, Benbachir A. Corrosion behavior of stainless steel in phosphoric acid polluted by sulfide ions [J]. Corrosion, 1993, 49: 656
doi: 10.5006/1.3316097
6 Escrivà-Cerdán C, Blasco-Tamarit E, García-García D M, et al. Effect of potential formation on the electrochemical behaviour of a highly alloyed austenitic stainless steel in contaminated phosphoric acid at different temperatures [J]. Electrochim. Acta, 2012, 80: 248
doi: 10.1016/j.electacta.2012.07.012
7 Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: a combined electrochemical and analytical study [J]. Electrochim. Acta, 2010, 55: 6174
doi: 10.1016/j.electacta.2009.10.026
8 Borrás C A, Romagnoli R, Lezna R O. In-situ spectroelectrochemistry (UV-visible and infrared) of anodic films on iron in neutral phosphate solutions [J]. Electrochim. Acta, 2000, 45: 1717
doi: 10.1016/S0013-4686(99)00393-X
9 Reffass M, Sabot R, Jeannin M, et al. Effects of phosphate species on localised corrosion of steel in NaHCO3+NaCl electrolytes [J]. Electrochim. Acta, 2009, 54: 4389
doi: 10.1016/j.electacta.2009.03.014
10 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. Chim. Sin., 2005, 21: 740
doi: 10.3866/PKU.WHXB20050709
10 林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
11 Muñoz A I, Antón J G, Guiñón J L, et al. Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in libr solutions using electrochemical techniques [J]. Corros. Sci., 2007, 49: 3200
doi: 10.1016/j.corsci.2007.03.002
12 Song P C. Study on corrosion behaviors of a new marine al-mg alloy [D]. Harbin: Harbin Engineering University, 2020: 24
12 宋鹏程. 新型Al-Mg系船用铝合金的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020: 24
13 Zhao Y, Li X P, Zhang C, et al. Investigation of the rotation speed on corrosion behavior of HP-13Cr stainless steel in the extremely aggressive oilfield environment by using the rotating cage test [J]. Corros. Sci., 2018, 145: 307
doi: 10.1016/j.corsci.2018.10.011
14 Yi G H, Zheng D J, Song G L. Influence of acid pickling on morphology, optical parameters and corrosion resistance of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 461
14 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 461
15 Xiao Q, Lu Z P, Chen J J, et al. Magnetoelectropolishing treatment for improving the oxidation resistance of 316L stainless steel in pressurized water reactor primary water [J]. J. Nucl. Mater., 2019, 518: 357
doi: 10.1016/j.jnucmat.2019.03.028
16 Cui T M, Cai S W, Ning F, et al. Effect of pre-charged hydrogen on the oxide film of 316L stainless steel in simulated PWR primary water [J]. Corros. Prot., 2021, 42: 1
16 崔同明, 蔡爽巍, 宁飞 等. 模拟压水堆一回路水中预充氢对316L不锈钢氧化膜的影响 [J]. 腐蚀与防护, 2021, 42: 1
17 Almeida E, Pereira D, Figueiredo M O, et al. The influence of the interfacial conditions on rust conversion by phosphoric acid [J]. Corros. Sci., 1997, 39: 1561
doi: 10.1016/S0010-938X(97)00058-9
18 Hakiki N E, Montemor M F, Ferreira M G S, et al. Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel [J]. Corros. Sci., 2000, 42: 687
doi: 10.1016/S0010-938X(99)00082-7
19 Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
doi: 10.1016/j.corsci.2004.07.002
[1] 胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
[2] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[3] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[4] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[5] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[6] 李向红, 徐昕, 雷然, 邓书端. 磷酸中核桃青皮复配缓蚀剂对冷轧钢的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2022, 42(3): 358-368.
[7] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.
[8] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[9] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[10] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[11] 孙宝壮, 周霄骋, 李晓荣, 孙玮潞, 刘子瑞, 王玉花, 胡洋, 刘智勇. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理[J]. 中国腐蚀与防护学报, 2021, 41(6): 811-818.
[12] 宫克, 吴明, 张胜. HCO3-对X90管线钢应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 727-731.
[13] 张龙华, 李长君, 潘磊, 韩思柯, 王昕, 崔中雨. S2-对316L不锈钢在模拟油田污水中的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 625-632.
[14] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[15] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.