|
|
高等级合金CO2环境下的腐蚀行为研究 |
梁志远1( ), 徐一鸣1, 王硕1,2, 李玉峰1, 赵钦新1 |
1.西安交通大学 热流科学与工程教育部重点实验室 西安 710049 2.哈尔滨锅炉厂有限责任公司 哈尔滨 150046 |
|
Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment |
LIANG Zhiyuan1( ), XU Yiming1, WANG Shuo1,2, LI Yufeng1, ZHAO Qinxin1 |
1.MOE Key Laborary of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China 2.Harbin Boiler Company Limited, Harbin 150046, China |
引用本文:
梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
Zhiyuan LIANG,
Yiming XU,
Shuo WANG,
Yufeng LI,
Qinxin ZHAO.
Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 613-620.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2021.210
或
https://www.jcscp.org/CN/Y2022/V42/I4/613
|
1 |
Ji S D, Zhou R C, Wang S P, et al. Current status of research and development of 700 ℃ advanced ultra-supercritical power generation technology and localization suggestions [J]. Therm. Power Gener., 2011, 40(7): 86
|
1 |
纪世东, 周荣灿, 王生鹏 等. 700 ℃等级先进超超临界发电技术研发现状及国产化建议 [J]. 热力发电, 2011, 40(7): 86
|
2 |
Lu J T, Zhao X B, Yuan Y, et al. Corrosion behavior of alloys in supercritical CO2 Brayton cycle power generation [J]. Proc. CSEE, 2016, 36: 739
|
2 |
鲁金涛, 赵新宝, 袁勇 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 [J]. 中国电机工程学报, 2016, 36: 739
|
3 |
Feng J C. Thermodynamic analysis of supercritical carbon dioxide Brayton cycle power system [J]. Energy Conserv., 2019, 38(8): 34
|
3 |
冯建闯. 超临界二氧化碳布雷顿循环发电系统热力学分析 [J]. 节能, 2019, 38(8): 34
|
4 |
Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
|
4 |
李瑞涛, 肖博, 刘晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327
|
5 |
Sarvghad M, Maher S D, Collard D, et al. Materials compatibility for the next generation of concentrated solar power plants [J]. Energy Storage Mater., 2018, 14: 179
|
6 |
Martin W R, Weir J R. Influence of chromium content on carburization of chromium-nickel-iron alloys in carbon dioxide [J]. J. Nucl. Mater., 1965, 16: 19
doi: 10.1016/0022-3115(65)90087-5
|
7 |
McCoy H E. Type 304 stainless steel vs flowing CO2 at atmospheric pressure and 1100-1800F [J]. Corrosion, 1965, 21: 84
doi: 10.5006/0010-9312-21.3.84
|
8 |
Xie Y, Nguyen T D, Zhang J Q, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800 ℃ [J]. Corros. Sci., 2019, 146: 28
doi: 10.1016/j.corsci.2018.10.029
|
9 |
Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
doi: 10.1149/2.1021706jes
|
10 |
Lu J T, Gu Y F. High-temperature steam oxidation behavior of alloys used for key parts of the power plant boiler [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 19
|
10 |
鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 19
|
11 |
Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corros. Sci., 2019, 157: 20
doi: 10.1016/j.corsci.2019.05.019
|
12 |
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700 ℃ [J]. Corros. Sci., 2020, 170: 108702
doi: 10.1016/j.corsci.2020.108702
|
13 |
Liang Z Y, Zhao Q X. High temperature oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam [J]. Mater. High Temp., 2019, 36: 87
doi: 10.1080/09603409.2018.1465712
|
14 |
Gui Y, Liang Z Y, Zhao Q X. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxid. Met., 2019, 92: 123
doi: 10.1007/s11085-019-09917-x
|
15 |
Mahaffey J, Adam D, Brittan A, et al. Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions [J]. Oxid. Met., 2016, 86: 567
doi: 10.1007/s11085-016-9654-8
|
16 |
Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of steels in CO2 containing impurities [J]. Corros. Sci., 2020, 164: 108316
doi: 10.1016/j.corsci.2019.108316
|
17 |
Pint B A, Lehmusto J, Lance M J, et al. Effect of pressure and impurities on oxidation in supercritical CO2 [J]. Mater. Corros., 2019, 70: 1400
|
18 |
Jiang H, Dong J X, Zhang M C, et al. Oxidation behavior and mechanism of inconel 740h alloy for advanced ultra-supercritical power plants between 1050 and 1170 ℃ [J]. Oxid. Met., 2015, 84: 61
doi: 10.1007/s11085-015-9543-6
|
19 |
Lu J T, Yang Z, Xu S Q, et al. High temperature oxidation behavior of Inconel alloy 740H in pure steam [J]. Mater. Mech. Eng., 2015, 39(10): 37
|
19 |
鲁金涛, 杨珍, 徐松乾 等. Inconel 740H合金在纯水蒸气环境中的高温氧化行为 [J]. 机械工程材料, 2015, 39(10): 37
|
20 |
Xie Y X, Cheng X N, Xu G F, et al. Oxidation behavior of high temperature alloy Inconel 740H in air and water vapor environment [J]. Hot Work. Technol., 2018, 47(14): 55
|
20 |
谢奕心, 程晓农, 徐桂芳 等. 高温合金Inconel 740H在空气和水蒸气环境中的氧化行为 [J]. 热加工工艺, 2018, 47(14): 55
|
21 |
Li Y F, Liang Z Y, Deng S F, et al. Corrosion behavior of heat resistant alloys HR6W and 740H in high-temperature carbon dioxide environment [J]. J. Xi'an Jiaotong Univ., 2020, 54(5): 179
|
21 |
李玉峰, 梁志远, 邓世丰 等. 高温CO2环境下耐热合金HR6W和740H的腐蚀行为 [J]. 西安交通大学学报, 2020, 54(5): 179
|
22 |
Birks N, Meier G H, Pettit F K, translated by Xin L, Wang W. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd ed. Beijing: Higher Education Press, 2010
|
22 |
Birks N, Meier G H, Pettit F K著, 辛丽, 王文译. 金属高温氧化导论 [M]. 2版. 北京: 高等教育出版社, 2010
|
23 |
Liang Z Y, Singh P M, Zhao Q X, et al. High temperature oxidation of newly developed alloy 282 in the flowing-air and steam condition at 900~1100 ℃ [J]. Oxid. Met., 2015, 84: 291
doi: 10.1007/s11085-015-9555-2
|
24 |
Liang Z Y, Gui Y, Zhao Q X. High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition [J]. J. Xi'an Jiaotong Univ., 2019, 53(7): 23
|
24 |
梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究 [J]. 西安交通大学学报, 2019, 53(7): 23
|
25 |
Deodeshmukh V P, Pint B A. Long-term performance of high temperature alloys in oxidizing environments and supercritical CO2 [A]. Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials 2019 [C]. Nagasaki, Japan, 2019
|
26 |
Yu M, Liang Z Y, Gui Y, et al. Experimental study on high temperature resistance in simulated coal-ash environment of four superalloys for AUSC power plant boilers [J]. Surf. Technol., 2018, 47(6): 8
|
26 |
于淼, 梁志远, 桂雍 等. 4种先进超超临界电站锅炉用高温合金高温腐蚀性能实验研究 [J]. 表面技术, 2018, 47(6): 8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|