Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (4): 613-620    DOI: 10.11902/1005.4537.2021.210
  研究报告 本期目录 | 过刊浏览 |
高等级合金CO2环境下的腐蚀行为研究
梁志远1(), 徐一鸣1, 王硕1,2, 李玉峰1, 赵钦新1
1.西安交通大学 热流科学与工程教育部重点实验室 西安 710049
2.哈尔滨锅炉厂有限责任公司 哈尔滨 150046
Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment
LIANG Zhiyuan1(), XU Yiming1, WANG Shuo1,2, LI Yufeng1, ZHAO Qinxin1
1.MOE Key Laborary of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.Harbin Boiler Company Limited, Harbin 150046, China
全文: PDF(19585 KB)   HTML
摘要: 

以Sanicro 25奥氏体不锈钢和HR230、740H镍基合金为研究对象,在高温CO2环境下分别进行了800、900和1000 ℃的腐蚀实验。利用分析天平获得材料反应前后的质量变化,利用SEM/EDS对合金反应后的形貌及腐蚀产物进行观察分析,利用XRD表征合金表面的腐蚀产物。结果表明:3种材料在高温CO2环境下的腐蚀动力学曲线均符合抛物线规律,反应速率均随着温度的升高呈现量级的增加,表面腐蚀产物尺寸随着温度的升高不断增大。3种材料表面生成的腐蚀产物主要为富Cr氧化物。3种材料表面腐蚀产物结构存在差异,Sanicro 25不锈钢上的呈多层,而HR230和740H合金上的为单层;HR230和740H合金均存在内氧化现象,且740H合金中高含量的Al和Ti使其内氧化程度更加严重,抗CO2腐蚀性能降低。因此,在高温CO2环境下镍基合金HR230具有较为优越的抗腐蚀性能。

关键词 耐热合金高温CO2腐蚀行为    
Abstract

Corrosion behavior of Sanicro 25 austenitic steel, HR230 and 740H Ni-based alloys in CO2 environment at 800, 900 and 1000 ℃ was studied by means of weight gain measurement, scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray diffractometer. The results showed that the corrosion kinetic curves of the three alloys in the high-temperature CO2 environment conformed to the parabolic law. The reaction rates of the three alloys all increased with the temperature, and the thickness of surface corrosion products also increased with the temperature. The corrosion products generated on the surface of the three alloys were mainly Cr-rich oxides, which were caused by the high content of Cr. However,the structure of the surface corrosion products of Sanicro 25 steel and HR230 and 740H alloys was different. Sanicro 25 steel was a composite layer type, HR230 and 740H alloys was a single-layer type; both HR230 and 740H alloys had internal oxidation, and the high content of Al and Ti in 740H alloy made internal oxidation more serious, therewith degraded its corrosion resistance. According to the corrosion mass gain measurement results and the occurrence of internal oxidation phenomenon, the nickel-based alloy HR230 has superior corrosion resistance in high temperature CO2 environment.

Key wordsheat-resistance alloy    high-temperature carbon dioxide    corrosion behavior
收稿日期: 2021-08-24     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51806166);黑龙江省自然科学基金优秀青年基金(YQ2020E032);中国博士后科学基金(BX20190269);中国博士后科学基金(2020M683474)
通讯作者: 梁志远     E-mail: liangzy@xjtu.edu.cn
Corresponding author: LIANG Zhiyuan     E-mail: liangzy@xjtu.edu.cn
作者简介: 徐一鸣,男,1998年生,硕士生

引用本文:

梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
Zhiyuan LIANG, Yiming XU, Shuo WANG, Yufeng LI, Qinxin ZHAO. Corrosion Behavior of Heat-resistant Alloys in High Temperature CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(4): 613-620.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.210      或      https://www.jcscp.org/CN/Y2022/V42/I4/613

图1  实验系统图
MaterialCSiMnCrNiFeTiOthers
Sanicro 25 steel0.080.200.5022.5025.00Bal.---P:0.02, S:0.04, Nb:0.50
HR230 alloy0.100.300.5022.10Bal~59.90---0.01W:14.2, Mo:1.20, Al:0.37
740H alloy0.0280.030.0224.73Bal.0.121.31Al:1.53, Mo:0.3, Co:20.3
表1  3种材料的材料成分
图2  3种材料在CO2气氛中不同温度下的腐蚀动力学曲线
Temperature / ℃Parabolic rate constant / g2·cm-4·s-1
Sanicro 25HR230740H
8001.78×10-141.11×10-155.44×10-14
9001.47×10-134.69×10-148.10×10-13
10001.82×10-129.84×10-139.81×10-12
表2  3种材料在不同温度下的抛物线速率常数
图3  3种材料在不同温度下腐蚀100 h后的质量变化
图4  lnKp与1/T的关系曲线
图5  3种材料在不同温度腐蚀100 h后的宏观表面形貌
图6  3种材料在不同温度下腐蚀100 h后的表面微观形貌
图7  3种合金在不同温度下腐蚀100 h后的断面微观形貌
图8  Sanicro 25耐热钢,R230合金和740H合金在1000 ℃下腐蚀100 h后的断面形貌及元素面扫描
图9  3种合金在不同温度下腐蚀100 h后的XRD分析
1 Ji S D, Zhou R C, Wang S P, et al. Current status of research and development of 700 ℃ advanced ultra-supercritical power generation technology and localization suggestions [J]. Therm. Power Gener., 2011, 40(7): 86
1 纪世东, 周荣灿, 王生鹏 等. 700 ℃等级先进超超临界发电技术研发现状及国产化建议 [J]. 热力发电, 2011, 40(7): 86
2 Lu J T, Zhao X B, Yuan Y, et al. Corrosion behavior of alloys in supercritical CO2 Brayton cycle power generation [J]. Proc. CSEE, 2016, 36: 739
2 鲁金涛, 赵新宝, 袁勇 等. 超临界二氧化碳布雷顿循环系统中材料的腐蚀行为 [J]. 中国电机工程学报, 2016, 36: 739
3 Feng J C. Thermodynamic analysis of supercritical carbon dioxide Brayton cycle power system [J]. Energy Conserv., 2019, 38(8): 34
3 冯建闯. 超临界二氧化碳布雷顿循环发电系统热力学分析 [J]. 节能, 2019, 38(8): 34
4 Li R T, Xiao B, Liu X, et al. Corrosion behavior of low alloy heat-resistant steel T23 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 327
4 李瑞涛, 肖博, 刘晓 等. 低合金耐热钢T23在高温超临界CO2环境中的腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 327
5 Sarvghad M, Maher S D, Collard D, et al. Materials compatibility for the next generation of concentrated solar power plants [J]. Energy Storage Mater., 2018, 14: 179
6 Martin W R, Weir J R. Influence of chromium content on carburization of chromium-nickel-iron alloys in carbon dioxide [J]. J. Nucl. Mater., 1965, 16: 19
doi: 10.1016/0022-3115(65)90087-5
7 McCoy H E. Type 304 stainless steel vs flowing CO2 at atmospheric pressure and 1100-1800F [J]. Corrosion, 1965, 21: 84
doi: 10.5006/0010-9312-21.3.84
8 Xie Y, Nguyen T D, Zhang J Q, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800 ℃ [J]. Corros. Sci., 2019, 146: 28
doi: 10.1016/j.corsci.2018.10.029
9 Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
doi: 10.1149/2.1021706jes
10 Lu J T, Gu Y F. High-temperature steam oxidation behavior of alloys used for key parts of the power plant boiler [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 19
10 鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展 [J]. 中国腐蚀与防护学报, 2014, 34: 19
11 Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corros. Sci., 2019, 157: 20
doi: 10.1016/j.corsci.2019.05.019
12 Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700 ℃ [J]. Corros. Sci., 2020, 170: 108702
doi: 10.1016/j.corsci.2020.108702
13 Liang Z Y, Zhao Q X. High temperature oxidation of Fe-Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam [J]. Mater. High Temp., 2019, 36: 87
doi: 10.1080/09603409.2018.1465712
14 Gui Y, Liang Z Y, Zhao Q X. Corrosion and carburization behavior of heat-resistant steels in a high-temperature supercritical carbon dioxide environment [J]. Oxid. Met., 2019, 92: 123
doi: 10.1007/s11085-019-09917-x
15 Mahaffey J, Adam D, Brittan A, et al. Corrosion of alloy Haynes 230 in high temperature supercritical carbon dioxide with oxygen impurity additions [J]. Oxid. Met., 2016, 86: 567
doi: 10.1007/s11085-016-9654-8
16 Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of steels in CO2 containing impurities [J]. Corros. Sci., 2020, 164: 108316
doi: 10.1016/j.corsci.2019.108316
17 Pint B A, Lehmusto J, Lance M J, et al. Effect of pressure and impurities on oxidation in supercritical CO2 [J]. Mater. Corros., 2019, 70: 1400
18 Jiang H, Dong J X, Zhang M C, et al. Oxidation behavior and mechanism of inconel 740h alloy for advanced ultra-supercritical power plants between 1050 and 1170 ℃ [J]. Oxid. Met., 2015, 84: 61
doi: 10.1007/s11085-015-9543-6
19 Lu J T, Yang Z, Xu S Q, et al. High temperature oxidation behavior of Inconel alloy 740H in pure steam [J]. Mater. Mech. Eng., 2015, 39(10): 37
19 鲁金涛, 杨珍, 徐松乾 等. Inconel 740H合金在纯水蒸气环境中的高温氧化行为 [J]. 机械工程材料, 2015, 39(10): 37
20 Xie Y X, Cheng X N, Xu G F, et al. Oxidation behavior of high temperature alloy Inconel 740H in air and water vapor environment [J]. Hot Work. Technol., 2018, 47(14): 55
20 谢奕心, 程晓农, 徐桂芳 等. 高温合金Inconel 740H在空气和水蒸气环境中的氧化行为 [J]. 热加工工艺, 2018, 47(14): 55
21 Li Y F, Liang Z Y, Deng S F, et al. Corrosion behavior of heat resistant alloys HR6W and 740H in high-temperature carbon dioxide environment [J]. J. Xi'an Jiaotong Univ., 2020, 54(5): 179
21 李玉峰, 梁志远, 邓世丰 等. 高温CO2环境下耐热合金HR6W和740H的腐蚀行为 [J]. 西安交通大学学报, 2020, 54(5): 179
22 Birks N, Meier G H, Pettit F K, translated by Xin L, Wang W. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd ed. Beijing: Higher Education Press, 2010
22 Birks N, Meier G H, Pettit F K著, 辛丽, 王文译. 金属高温氧化导论 [M]. 2版. 北京: 高等教育出版社, 2010
23 Liang Z Y, Singh P M, Zhao Q X, et al. High temperature oxidation of newly developed alloy 282 in the flowing-air and steam condition at 900~1100 ℃ [J]. Oxid. Met., 2015, 84: 291
doi: 10.1007/s11085-015-9555-2
24 Liang Z Y, Gui Y, Zhao Q X. High-temperature corrosion behavior of three heat-resistant steels under supercritical carbon dioxide condition [J]. J. Xi'an Jiaotong Univ., 2019, 53(7): 23
24 梁志远, 桂雍, 赵钦新. 超临界二氧化碳条件下3种典型耐热钢腐蚀特性实验研究 [J]. 西安交通大学学报, 2019, 53(7): 23
25 Deodeshmukh V P, Pint B A. Long-term performance of high temperature alloys in oxidizing environments and supercritical CO2 [A]. Joint EPRI-123HiMAT International Conference on Advances in High Temperature Materials 2019 [C]. Nagasaki, Japan, 2019
26 Yu M, Liang Z Y, Gui Y, et al. Experimental study on high temperature resistance in simulated coal-ash environment of four superalloys for AUSC power plant boilers [J]. Surf. Technol., 2018, 47(6): 8
26 于淼, 梁志远, 桂雍 等. 4种先进超超临界电站锅炉用高温合金高温腐蚀性能实验研究 [J]. 表面技术, 2018, 47(6): 8
[1] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[2] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[3] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[4] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[5] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[6] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[7] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[8] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[13] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[15] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.