Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (5): 257-262     
  研究报告 本期目录 | 过刊浏览 |
埋地管线剥离覆盖层下阴极保护的有效性
闫茂成;王俭秋;韩恩厚;柯伟
中国科学院金属研究所
Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines
;;;
中国科学院金属研究所
全文: PDF(389 KB)  
摘要: 由微小缝隙模拟管线剥离覆盖层(涂层)下的局部电化学环境,用微电极技术测量了缝隙内局部电位及pH的分布,研究了缝口阴极保护电位、剥离区几何形状、溶液电导率等因素对剥离区内部局部环境及阴极保护水平的影响。结果表明,剥离区内电位降(电位梯度)主要集中在破损口附近,而剥离区深处接近自然腐蚀状态;剥离区内有效保护距离随缝口保护电位负移而增加,但缝口过保护并不能有效提高剥离区保护效果。阴极保护可使剥离区局部电化学环境pH升高、电导率增大。
关键词 阴极保护管道涂层缝隙腐蚀微电极电位    
Abstract:The local potential and pH along a crevice simulating disbonded coating on pipelines were measured using microelectrodes.The effectiveness of cathodic protection (CP) in the local environment and the effects of applied cathodic potential, geometry of the crevice and solutio conductivity were investigated. The results showed that the IR drop in the disbondment mainly occurred in the vicinity of the opening. The distance effectively protected by CP increased with the decreasing applied potential. However, hydrogen evolution had a reverse effect when an overprotection potential was applied. The additional effct of CP was shown to be the modification of the local environment , such as increase of pH and conductivity of solution, which was beneficial to corrosion controlling as well as direct polarization of the exposed steel at the holiday.
Key wordscathodic protection    pipeline    coating    crevice corrosion    microelectrode    IR drop
收稿日期: 2006-04-12     
ZTFLH:  TG174.41  
通讯作者: 闫茂成     E-mail: yanmc@imr.ac.cn

引用本文:

闫茂成; 王俭秋; 韩恩厚; 柯伟 . 埋地管线剥离覆盖层下阴极保护的有效性[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .
. Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines. J Chin Soc Corr Pro, 2007, 27(5): 257-262 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2007/V27/I5/257

[1]Toncre A C.On achieving polarization beneath unbonded pipe coat-ings[J].Mater.Performance,1984,22-27
[2]Song F M,Kirk D W,Graydon J W,et al.Corrosion under dis-bonded coatings having cathodic protection[J].Mater.Performance,2003,42(9):24-26
[3]Beavers J A,Thompson N G.Corrosion beneath disbonded pipelinecoatings[J].Mater.Performance,1997,36(4):13-19
[4]Sabde G,Gan F,Chin D T.Cathodic protection of undergroundpipeline against crevice corrosion:a review[J].J.Chin.Inst.Chem.Eng.,1993,24(6):417-429
[5]Li Z F,Mao X H,Gan F X.Potential distribution inside a ca-thodic protection crevice[J].J.Chin.Soc.Corros.Prot.,2000,20(3):129-134(李正奉,毛旭辉,甘复兴.阴极保护下缝隙内的电位分布[J].中国腐蚀与防护学报,2000,20(3):129-134)
[6]Brousseau R,Qian S.Distribution of steady-state cathodic cur-rents underneath a disbonded coating[J].Corrosion,1994,50(12):907-911
[7]Gan F,Sun Z W,Sabde G,et al.Cathodic protection to mitigateexternal corrosion of underground steel pipe beneath disbondedcoating[J].Corrosion,1994,50(10):804-816
[8]Li S Y,Kim Y G,Kho Y T,et al.Statistical approach to corro-sion under disbonded coating on cathodically protected line pipesteel[J].Corrosion,2004,60(11):1058-1071
[9]Parkins R,Belhimer E,Blanchard W.Stress-corrosion crackingcharacteristics of a range of pipeline steels in carbonate-bicarbon-ate solution[J].Corrosion,1993,49(12):951-966
[10]Charles E A,Parkins R N.Generation of stress-corrosion crack-ing environments at pipeline surfaces[J].Corrosion,1995,51(7):518-527
[11]Wang M,Yao S.Carbonate-melt oxidized iridium wire for pH sens-ing[J].Electroanalysis,2003,15(20):1606-1615
[12]Fessler R R,Markworth A J,Parkins R N.Cathodic protectionlevels under disbonded coatings[J].Corrosion,1983,39(1):20-25
[13]Husock B,Wilson R.Potentials and hydrogen evolution on coatedpipe[J].Mater.Performance,1984,9:26-30
[14]Perdomo J J,Song I.Chemical and electrochemical conditions onsteel under disbonded coatings:the effect of applied potential,so-lution resistivity,crevice thickness and holiday size[J].Corros.Sci.,2000,42(8):1389-1415
[15]Kajiyama F,Okamura K.Evaluating cathodic protection reliabili-ty on steel pipe in microbiologically active soils[J].Corrosion,1999,55(1):74-80
[16]Yan M C,Weng Y J.High pH environment under disbonded coat-ing on cathodic protected pipelines[J].J.Chin.Soc.Corros.Prot.,2004,24(2):95-99(闫茂成,翁永基.阴极保护管线破损涂层下高pH环境形成规律[J].中国腐蚀与防护学报,2004,24(12):95-99)
[1] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[6] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[9] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[10] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[11] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[12] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[13] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[14] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[15] 丁国清,李向阳,张波,杨朝晖,黄桂桥,杨海洋,刘凯吉. 金属材料在天然海水中的腐蚀电位及其变化规律[J]. 中国腐蚀与防护学报, 2019, 39(6): 543-549.