|
|
含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 |
刘宏宇, 张喜庆, 滕莹雪, 李胜利( ) |
辽宁科技大学材料与冶金学院 鞍山 114051 |
|
Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment |
LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli( ) |
School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China |
引用本文:
刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
Hongyu LIU,
Xiqing ZHANG,
Yingxue TENG,
Shengli LI.
Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 679-685.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.242
或
https://www.jcscp.org/CN/Y2021/V41/I5/679
|
1 |
Hou B R. Corrosion cost and economic development [J]. Sci. Technol. Ind. China, 2020, (2): 21
|
1 |
侯保荣. 腐蚀成本与经济发展 [J]. 中国科技产业, 2020, (2): 21
|
2 |
Yang X, Lian Y D, Bai Y L, et al. Effect of alloying elements on corrosion resistance of maraging stainless steel [J]. Mater. Rev., 2011, 25(S1): 517
|
2 |
杨霞, 连玉栋, 白英龙等. 合金元素对马氏体时效强化不锈钢耐腐蚀性能的影响 [J]. 材料导报, 2011, 25(S1): 517
|
3 |
Sun D, Xu D K, Yang C G, et al. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance [J]. Mater. Sci. Eng., 2016, 69C: 744
|
4 |
Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 359
|
4 |
肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 359
|
5 |
Tian Y, Pei X Z, Zhu X L, et al. Microbial inhibition of metal corrosion: A review [J]. Microbiol. China, 2020, 47: 4260
|
5 |
田园, 裴学政, 朱晓丽等. 微生物抑制金属腐蚀机理的研究进展 [J]. 微生物学通报, 2020, 47: 4260
|
6 |
Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
|
7 |
Ren Y D, Zhai X F, Liu X, et al. Electrodeposition and antibacterial properties of bismuth sulfide nanoparticles-zinc composite coatings [J]. Surf. Technol., 2020, 49(6): 114
|
7 |
任亚东, 翟晓凡, 刘欣等. 纳米硫化铋-锌复合镀膜的制备及其抗菌性能研究 [J]. 表面技术, 2020, 49(6): 114
|
8 |
Zhai X F, Guan F, Wang N, et al. Preparation of DCOIT composited Zn-Ni alloy antibacterial coatings and sulfate-reducing bacterial corrosion resistance [J]. Surf. Technol., 2019, 48(7): 247
|
8 |
翟晓凡, 管方, 王楠等. DCOIT复合Zn-Ni合金抗菌镀层的制备及其耐SRB腐蚀性能研究 [J]. 表面技术, 2019, 48(7): 247
|
9 |
Lu Z J, Yang C G, Wang S, et al. Hot deformation equation and processing map of Cu-bearing 317L austenitic antibacterial stainless steel [J]. Iron Steel, 2014, 49(5): 52
|
9 |
卢志江, 杨春光, 王帅等. 317L-Cu奥氏体抗菌不锈钢的热变形方程及其热加工图 [J]. 钢铁, 2014, 49(5): 52
|
10 |
Li B, Wang S, Xiao C, et al. Effect of heat treatment process on microstructure and mechanical properties of 3Cr13MoCu stainless steel [J]. Metall. Funct. Mater., 2019, 26(4): 30
|
10 |
李勃, 王帅, 肖超等. 热处理工艺对3Cr13MoCu不锈钢组织及性能的影响 [J]. 金属功能材料, 2019, 26(4): 30
|
11 |
Wang Q X. Research on the bactericidal properties of copper and metal allergy [J]. World Nonferrous Met., 2011, (9): 68
|
11 |
王庆新. 铜杀菌性能及金属过敏的研究 [J]. 世界有色金属, 2011, (9): 68
|
12 |
Chen S H, Lv M Q, Zhang J D, et al. Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel [J]. Acta Metall. Sin., 2004, 40: 314
|
12 |
陈四红, 吕曼祺, 张敬党等. 含Cu抗菌不锈钢的微观组织及其抗菌性能 [J]. 金属学报, 2004, 40: 314
|
13 |
Wang S, Lu Z J, Yang C G, et al. Antibacterial properties of 17-4PH stainless steel [J]. Chin. J. Mater. Res., 2014, 28: 15
|
13 |
王帅, 卢志江, 杨春光等. 17-4PH不锈钢的抗菌性能 [J]. 材料研究学报, 2014, 28: 15
|
14 |
Wang S, Yang C G, Shen M, et al. Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel [J]. Mater. Technol., 2014, 29: 257
|
15 |
Wang S, Yang K, Ren L, et al. Antibacterial performance of copper-bearing CoCrMo alloy [J]. Rare Met. Mater. Eng., 2015, 44: 2496
|
15 |
王帅, 杨柯, 任玲等. 含铜CoCrMo钴基合金的抗菌特性研究 [J]. 稀有金属材料与工程, 2015, 44: 2496
|
16 |
Ishikawa T, Minamigawa M, Kandori K, et al. Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH [J]. J. Electrochem. Soc., 2004, 151: B512
|
17 |
Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
|
17 |
刘海霞, 黄峰, 袁玮等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
|
18 |
Liu R, Chen X P, Wang X D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment [J]. Hot Work. Technol., 2014, 43(20): 19
|
18 |
刘芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响 [J]. 热加工工艺, 2014, 43(20): 19
|
19 |
Yao Q, Huang J H, Yang L, et al. Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process [J]. Chin. J. Environ. Eng., 2018, 12: 2783
|
19 |
姚琪, 黄建洪, 杨磊等. 硫酸盐生物还原过程中涉硫组分代谢特性 [J]. 环境工程学报, 2018, 12: 2783
|
20 |
Nan L, Liu Y Q, Lv M Q, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy [J]. J. Mater. Sci. Mater. Med., 2008, 19: 3057
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|