Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 679-685    DOI: 10.11902/1005.4537.2020.242
  研究报告 本期目录 | 过刊浏览 |
含铜低碳钢在海洋环境下的耐蚀和防污性能的研究
刘宏宇, 张喜庆, 滕莹雪, 李胜利()
辽宁科技大学材料与冶金学院 鞍山 114051
Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment
LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli()
School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
全文: PDF(13633 KB)   HTML
摘要: 

采用自主设计的0Cu2Cr钢,通过与Q345钢相对比,分别考察了在海洋环境下和硫酸盐还原菌 (SRB) 环境下二者的耐蚀和防污性能。结果表明,0Cu2Cr钢的腐蚀电位和阻抗模值均大于Q345钢,腐蚀电流密度小于Q345钢,其耐蚀性明显优于Q345钢;0Cu2Cr钢中的Cu使γ-FeOOH向更稳定的α-FeOOH转变,使锈层更致密,富集的Cu与析出的Cr形成Cu2Cr2O4等氧化物,吸附在锈层周围,降低锈层导电性,保护基体,使0Cu2Cr钢具有良好的耐蚀性;碳钢中的富Cu相导致SRB凋亡,使0Cu2Cr钢具有良好的防污性能。

关键词 含铜钢SRB耐蚀性微观形貌    
Abstract

A novel Cu-bearing low-carbon steel 0Cu2Cr (with 2.5%Cu) was independently designed and developed, then the corrosion resistance and antifouling performance of 0Cu2Cr carbon steel and the ordinary weathering steel Q345 steel in natural seawater and the SRB culture medium were comparatively investigated. The results show that the corrosion potential and impedance loop diameters of 0Cu2Cr steel are both greater than, and the corrosion current density is less than those of Q345 steel, namely the 0Cu2Cr steel presents significantly better corrosion resistance, which may be ascribed to that the presence of Cu in 0Cu2Cr steel can promote the transformation of γ-FeOOH to the more stable α-FeOOH in the rust layer, hence the rust layer became denser, meanwhile the enriched copper and the precipitated Cr could form complex oxides such as Cu2Cr2O4, which are adsorbed around the rust layer, so that reduce the conductivity of the rust layer. As a result, the 0Cu2Cr steel presents good corrosion resistance. On the other hand, the Cu-rich phase in carbon steel can lead to SRB apoptosis, so that 0Cu2Cr steel has good antifouling properties.

Key wordscopper-containing steel    SRB    corrosion resistance    micro-morphology
收稿日期: 2020-11-24     
ZTFLH:  TG172  
基金资助:国家重点研发计划(2017YFB0304201);国家自然科学基金(51974155);海工钢联合基金;辽宁科技大学研究生科技创新项目(LKDYC202002)
通讯作者: 李胜利     E-mail: Lishengli@ustl.edu.cn
Corresponding author: LI Shengli     E-mail: Lishengli@ustl.edu.cn
作者简介: 刘宏宇,男,1997年生,硕士生

引用本文:

刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
Hongyu LIU, Xiqing ZHANG, Yingxue TENG, Shengli LI. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 679-685.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.242      或      https://www.jcscp.org/CN/Y2021/V41/I5/679

SteelCSiMnCaCrCuFe
Q3450.00090.33311.4320.028------Bal.
0Cu2Cr CS0.0010.330.86---0.712.5Bal.
表1  实验材料化学成分
图1  SRB革兰氏染色图
图2  试样在海水和SRB环境的极化曲线图
PatameterQ345 steel0Cu2Cr CS
Natural seawaterSRBNatural seawaterSRB
Icorr / A7.478×10-41.355×10-45.09×10-54.377×10-5
Ecorr / V-1.5320-0.9568-0.9728-0.928
表2  试样在不同环境下的腐蚀电流和腐蚀电位
图3  试样在海水和SRB环境下的Nyquist图
图4  试样腐蚀过程中的腐蚀速率曲线
图5  Q345钢和0Cu2Cr钢试样内锈层的SEM形貌
图6  试样内锈层的XRD谱
图7  Q345钢和0Cu2Cr钢外锈层的SEM形貌
图8  试样外锈层的XRD图谱
图9  Q345钢和0Cu2Cr钢横截面SEM形貌
图10  SRB腐蚀14 d后的EDS谱
图11  试样被SRB腐蚀14 d后的表面SEM形貌
1 Hou B R. Corrosion cost and economic development [J]. Sci. Technol. Ind. China, 2020, (2): 21
1 侯保荣. 腐蚀成本与经济发展 [J]. 中国科技产业, 2020, (2): 21
2 Yang X, Lian Y D, Bai Y L, et al. Effect of alloying elements on corrosion resistance of maraging stainless steel [J]. Mater. Rev., 2011, 25(S1): 517
2 杨霞, 连玉栋, 白英龙等. 合金元素对马氏体时效强化不锈钢耐腐蚀性能的影响 [J]. 材料导报, 2011, 25(S1): 517
3 Sun D, Xu D K, Yang C G, et al. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance [J]. Mater. Sci. Eng., 2016, 69C: 744
4 Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 359
4 肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 359
5 Tian Y, Pei X Z, Zhu X L, et al. Microbial inhibition of metal corrosion: A review [J]. Microbiol. China, 2020, 47: 4260
5 田园, 裴学政, 朱晓丽等. 微生物抑制金属腐蚀机理的研究进展 [J]. 微生物学通报, 2020, 47: 4260
6 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
7 Ren Y D, Zhai X F, Liu X, et al. Electrodeposition and antibacterial properties of bismuth sulfide nanoparticles-zinc composite coatings [J]. Surf. Technol., 2020, 49(6): 114
7 任亚东, 翟晓凡, 刘欣等. 纳米硫化铋-锌复合镀膜的制备及其抗菌性能研究 [J]. 表面技术, 2020, 49(6): 114
8 Zhai X F, Guan F, Wang N, et al. Preparation of DCOIT composited Zn-Ni alloy antibacterial coatings and sulfate-reducing bacterial corrosion resistance [J]. Surf. Technol., 2019, 48(7): 247
8 翟晓凡, 管方, 王楠等. DCOIT复合Zn-Ni合金抗菌镀层的制备及其耐SRB腐蚀性能研究 [J]. 表面技术, 2019, 48(7): 247
9 Lu Z J, Yang C G, Wang S, et al. Hot deformation equation and processing map of Cu-bearing 317L austenitic antibacterial stainless steel [J]. Iron Steel, 2014, 49(5): 52
9 卢志江, 杨春光, 王帅等. 317L-Cu奥氏体抗菌不锈钢的热变形方程及其热加工图 [J]. 钢铁, 2014, 49(5): 52
10 Li B, Wang S, Xiao C, et al. Effect of heat treatment process on microstructure and mechanical properties of 3Cr13MoCu stainless steel [J]. Metall. Funct. Mater., 2019, 26(4): 30
10 李勃, 王帅, 肖超等. 热处理工艺对3Cr13MoCu不锈钢组织及性能的影响 [J]. 金属功能材料, 2019, 26(4): 30
11 Wang Q X. Research on the bactericidal properties of copper and metal allergy [J]. World Nonferrous Met., 2011, (9): 68
11 王庆新. 铜杀菌性能及金属过敏的研究 [J]. 世界有色金属, 2011, (9): 68
12 Chen S H, Lv M Q, Zhang J D, et al. Microstructure and antibacterial properties of Cu-contained antibacterial stainless steel [J]. Acta Metall. Sin., 2004, 40: 314
12 陈四红, 吕曼祺, 张敬党等. 含Cu抗菌不锈钢的微观组织及其抗菌性能 [J]. 金属学报, 2004, 40: 314
13 Wang S, Lu Z J, Yang C G, et al. Antibacterial properties of 17-4PH stainless steel [J]. Chin. J. Mater. Res., 2014, 28: 15
13 王帅, 卢志江, 杨春光等. 17-4PH不锈钢的抗菌性能 [J]. 材料研究学报, 2014, 28: 15
14 Wang S, Yang C G, Shen M, et al. Effect of aging on antibacterial performance of Cu-bearing martensitic stainless steel [J]. Mater. Technol., 2014, 29: 257
15 Wang S, Yang K, Ren L, et al. Antibacterial performance of copper-bearing CoCrMo alloy [J]. Rare Met. Mater. Eng., 2015, 44: 2496
15 王帅, 杨柯, 任玲等. 含铜CoCrMo钴基合金的抗菌特性研究 [J]. 稀有金属材料与工程, 2015, 44: 2496
16 Ishikawa T, Minamigawa M, Kandori K, et al. Influence of metal ions on the transformation of γ-FeOOH into α-FeOOH [J]. J. Electrochem. Soc., 2004, 151: B512
17 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength Bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
17 刘海霞, 黄峰, 袁玮等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
18 Liu R, Chen X P, Wang X D, et al. Effect of alloy elements on corrosion resistance of weathering steels in marine atmosphere environment [J]. Hot Work. Technol., 2014, 43(20): 19
18 刘芮, 陈小平, 王向东等. 合金元素对耐候钢在海洋大气环境下耐蚀性的影响 [J]. 热加工工艺, 2014, 43(20): 19
19 Yao Q, Huang J H, Yang L, et al. Characteristic of metabolism for sulfur-containing components during sulfate bioreduction process [J]. Chin. J. Environ. Eng., 2018, 12: 2783
19 姚琪, 黄建洪, 杨磊等. 硫酸盐生物还原过程中涉硫组分代谢特性 [J]. 环境工程学报, 2018, 12: 2783
20 Nan L, Liu Y Q, Lv M Q, et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy [J]. J. Mater. Sci. Mater. Med., 2008, 19: 3057
[1] 吴林涛, 周泽华, 张欣, 杨光恒, 张凯城, 王光宇. 等离子喷涂FeCrMoCBY铁基非晶涂层耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[2] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[3] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[4] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[5] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[6] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[7] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[8] 王雷, 董俊华, 韩达, 梁坚坤, 李权, 柯伟. 含铜钢在1150 ℃高温保温条件下的铜偏聚现象[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[9] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[10] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[11] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[12] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[13] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[14] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[15] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.