Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (3): 259-265    DOI: 10.11902/1005.4537.2019.075
  研究报告 本期目录 | 过刊浏览 |
交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响
王新华1, 杨永1,2(), 陈迎春1, 位凯玲1
1 北京工业大学机电学院 北京 100024
2 中国特种设备检测研究院 北京 100029
Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District
WANG Xinhua1, YANG Yong1,2(), CHEN Yingchun1, WEI Kailing1
1 College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100024, China
2 China Special Equipment Inspection and Research Institute, Beijing 100029, China
全文: PDF(4547 KB)   HTML
摘要: 

采用浸泡实验、表面分析及电化学测试技术研究了交流电流密度 (0~500 A/m2) 对X100管线钢在库尔勒土壤溶液中腐蚀行为的影响。结果表明:X100钢的平均腐蚀速率随着交流电流密度的增加而增大。交流电流密度不大于100 A/m2时,腐蚀形貌为均匀腐蚀,更大交流电流密度下腐蚀形貌为局部腐蚀。交流电干扰下的X100钢的腐蚀产物分为两层,表层为以FeOOH为主的疏松黄色产物,底层为以Fe3O4为主的存在大量裂纹的黑色产物,对金属基体缺乏保护性。在交流干扰开始瞬间,X100钢在模拟液中的腐蚀电位负偏移且交流电密度越大偏移量越大,但电流密度大于200/m2的腐蚀电位随之又明显正偏移后再趋于稳定。动电位极化曲线显示,交流干扰下X100钢在测试溶液中为活动溶解,腐蚀电流密度随着交流电流密度增大而增大。

关键词 X100管线钢交流干扰交流电流密度腐蚀行为库尔勒土壤模拟液    
Abstract

In recent years, many accidents caused by alternating current (AC) corrosion have been reported. AC corrosion had become a serious potential damage to buried steel pipelines. X100 pipeline steel is very promising material for long distance gas pipeline, and the soil at Korla district is a kind of typical saline-alkali soil in the western China. The effects of AC current density (0~500 A/m2) on the corrosion behavior of X100 steel in an artificial solution, which simulated the soil medium at Korla district of the Xinjiang Uygur Autonomous Region was investigated by electrochemical test, immersion tests and surface analysis techniques. Results show that the average corrosion rate of X100 steel increases with the increasing AC current density. When the AC current density is below 100 A/m2, the corrosion is uniform corrosion, while local corrosion occurred under a larger AC current density. The corrosion product of X100 steel under AC interference may be differentiated as two layers. The outer layer is a loose yellow product mainly composed of FeOOH, and the inner layer is a relatively dense and black product with cracks mainly composed of Fe3O4, which has almost no protectiveness to the substrate. At the beginning of AC interference, the corrosion potential of X100 steel in the simulated solution shifts negatively and the higher the AC density is, the potential shifts more significant, but as the AC density higher than 200 A/m2, the corrosion potential shifts positively and then tends to be stable. The potentiodynamic polarization curve shows that X100 steel is actively dissolved in the test solution under AC interference, and the corrosion current density increases as the AC current density increases.

Key wordsX100 pipeline steel    AC interference    AC current density    corrosion behavior    simulated soil medium
收稿日期: 2019-06-07     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51471011);市场监管总局科技计划项目(2019MK136);中国特检院科研项目 (2019青年03)
通讯作者: 杨永     E-mail: 13810116863@126.com
Corresponding author: YANG Yong     E-mail: 13810116863@126.com
作者简介: 王新华,男,1969年生,教授

引用本文:

王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
Xinhua WANG, Yong YANG, Yingchun CHEN, Kailing WEI. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District. Journal of Chinese Society for Corrosion and protection, 2020, 40(3): 259-265.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.075      或      https://www.jcscp.org/CN/Y2020/V40/I3/259

图1  X100管线钢显微组织
图2  电化学实验装置
图3  不同交流电流密度下的腐蚀速率
图4  交流电流密度对X100钢腐蚀电位影响
图5  以5000 Hz频率采集的交流干扰X100钢极化电位
图6  交流电流密度对X100钢极化曲线影响
图7  不同交流电流密度干扰144 h的X100钢腐蚀产物形貌
图8  不同交流电流密度干扰144 h的X100钢腐蚀产物成分分析
图9  不同交流电流密度作用144 h的X100钢腐蚀形貌
[1] Kulman F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17: 34
[2] Gummow R A, Wakelin R G, Segall S M. AC corrosion-a new threat to pipeline integrity? [A]. Proc. 1st International Pipeline Conference (IPC) [C]. Calgary, Canada, 1996: 443
[3] Fu Y Q, Wang X T, Chen S L. Stray current detection and treatment for buried natural gas pipeline of Nanlang segment [J]. Surf. Technol., 2016, 45(2): 22
[3] (符耀庆, 王秀通, 陈胜利. 南朗段埋地天然气管道杂散电流检测与治理 [J]. 表面技术, 2016, 45(2): 22)
[4] Guo A L, Zheng J Z. Detection, evaluation and preventive measures of stray current interference of product oil pipelines in Hunan [J]. Oil-Gasfield Surf. Eng., 2018, 37(9): 77
[4] (郭爱玲, 郑京召. 湖南成品油管道杂散电流干扰检测评价及防护措施 [J]. 油气田地面工程, 2018, 37(9): 77)
[5] Hanson H R, Smart J. AC corrosion on a pipeline located in an HVAC utility corridor [A]. Corrosion 2004 [C]. New Orleans, Louisiana: NACE International, 2004
[6] Movley C M. Pipeline Corrosion from Induced A. C. [A]. Corrosion 2005 [C]. Houston, Texas: NACE International, 2005
[7] Lalvani S B, Lin X A. A theoretical approach for predicting AC-induced corrosion [J]. Corros. Sci., 1994, 36: 1039
[8] Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part I [J]. Corros. Sci., 1995, 37: 1567
[9] Lalvani S B, Zhang G. The corrosion of carbon steel in a chloride environment due to periodic voltage modulation: Part II [J]. Corros. Sci., 1995, 37: 1583
[10] Goidanich S, Lazzari L, Ormellese M. AC corrosion. Part 2: Parameters influencing corrosion rate [J]. Corros. Sci., 2010, 52: 916
doi: 10.1016/j.corsci.2009.11.012
[11] Lazzari L, Goidanich S, Ormellese M O M, et al. Influence of ac on corrosion kinetics for carbon steel, zinc and copper [A]. Corrosion 2005 [C]. Houston, Texas: NACE International, 2005
[12] Wang X L, Yan M C, Shu Y, et al. AC interference corrosion of pipeline steel beneath delaminated coating with holiday [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 341
[12] (王晓霖, 闫茂成, 舒韵等. 破损涂层下管线钢的交流电干扰腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37: 341)
doi: 10.11902/1005.4537.2017.118
[13] Wang X H, Song X T, Chen Y C, et al. Corrosion behavior of X70 and X80 pipeline steels in simulated soil solution [J]. Int. J. Electrochem. Sci., 2018, 13: 6436
[14] Wang X H, Tang X H, Wang L W, et al. Synergistic effect of stray current and stress on corrosion of API X65 Steel [J]. J. Nat. Gas Sci. Eng., 2014, 21: 474
[15] Wang X H, Yang G Y, Huang H, et al. AC stray current corrosion law of buried steel pipeline [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 293
[15] (王新华, 杨国勇, 黄海等. 埋地钢质管道交流杂散电流腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2013, 33: 293)
[16] Wan H X, Song D D, Liu Z Y, et al. Effect of alternating current on corrosion behavior of X80 pipeline steel in near-neutral environment [J]. Acta Metall. Sin., 2017, 53: 575
doi: 10.11900/0412.1961.2016.00500
[16] (万红霞, 宋东东, 刘智勇等. 交流电对X80钢在近中性环境中腐蚀行为的影响 [J]. 金属学报, 2017, 53: 575)
doi: 10.11900/0412.1961.2016.00500
[17] Zhu M, Du C W, Li X G, et al. Effects of alternating current (AC) frequency on corrosion behavior of X80 pipeline steel in a simulated acid soil solution [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 225
[17] (朱敏, 杜翠薇, 李晓刚等. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 225)
doi: 10.11902/1005.4537.2013.127
[18] Zhang W W, Xiong Q R, Ji L K, et al. Application and prospect of pipeline steel in China [J]. Welded Pipe Tube, 2011, 34(1): 5
[18] (张伟卫, 熊庆人, 吉玲康等. 国内管线钢生产应用现状及发展前景[J]. 焊管, 2011, 34(1): 5)
[19] Xu T. Specification and manufacturing of pipes for the X100 operational trial [J]. Welded Pipe Tube, 2014, 37(6): 68
[19] (徐婷. X100钢管运行试验的技术标准和制造 [J]. 焊管, 2014, 37(6): 68)
[20] Liang P, Du C W, Li X G. Simulating and accelerating properties of Ku'erle soil simulated solution [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 97
[20] (梁平, 杜翠薇, 李晓刚. 库尔勒土壤模拟溶液的模拟性和加速性研究 [J]. 中国腐蚀与防护学报, 2011, 31: 97)
[21] McCollum B, Ahlborn G H. Influence of frequency of alternating or infrequently reversed current on electrolytic corrosion [J]. Ins. Electr. Eng., 1916, 35: 301
[22] Nielsen L V. Role of alkalization in AC induced corrosion of pipelines and consequences hereof in relation to CP requirements [A]. Corrosion 2005 [C]. Houston, Texas: NACE International, 2005
[23] Xu L Y, Su X, Yin Z X, et al. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines [J]. Corros. Sci., 2012, 61: 215
doi: 10.1016/j.corsci.2012.04.038
[24] Xiao H Y, Lalvani S B. A linear model of alternating voltage-induced corrosion [J]. J. Electrochem. Soc., 2008, 155: C69
[25] Kuang D, Cheng Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions [J]. Corros. Sci., 2014, 85: 304
doi: 10.1016/j.corsci.2014.04.030
[26] Zhang X Y, Shi Z Q, Wang F F, et al. Corrosion behavior of X100 pipeline steel in simulated solution of alkaline soil [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 33
[26] (张秀云, 石志强, 王彦芳等. X100管线钢在盐渍土壤模拟溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2015, 35: 33)
doi: 10.11902/1005.4537.2013.244
[27] Wu M, Xie F, Chen X, et al. Corrosion behavior of X80 pipeline steel and its weld joint in ku’erle soil environment [J]. J. Sichuan Univ. (Eng. Sci. Ed.), 2013, 45(5): 185
[27] (吴明, 谢飞, 陈旭等. X80管线钢及其焊缝在库尔勒土壤环境中腐蚀行为 [J]. 四川大学学报 (工程科学版), 2013, 45(5): 185)
[28] Liu C, Guo Y B, Wang D G, et al. Effects of alternating stray current on corrosion behavior of X80 pipeline steel [J]. Corros. Prot., 2015, 36: 213
[28] (刘骋, 郭岩宝, 王德国等. 交流杂散电流对X80管线钢腐蚀行为的影响 [J]. 腐蚀与防护, 2015, 36: 213)
[29] Yang Y, Li Z L, Wen C. Effects of alternating current on X70 steel morphology and electrochemical behavior [J]. Acta Metall. Sin., 2013, 49: 43
doi: 10.3724/SP.J.1037.2012.00361
[29] (杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响 [J]. 金属学报, 2013, 49: 43)
doi: 10.3724/SP.J.1037.2012.00361
[1] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[2] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[3] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[4] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[5] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[6] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[7] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[8] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[9] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] 曹海娇, 魏英华, 赵洪涛, 吕晨曦, 毛耀宗, 李京. Q345钢预热时间对熔结环氧粉末涂层防护性能的影响II:涂层体系失效行为分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] 张杰, 胡秀华, 郑传波, 段继周, 侯保荣. 海洋微藻环境中钙质层对Q235碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[14] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[15] 刘栓,周开河,方云辉,徐孝忠,江炯,郭小平,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响I—Cl-浓度和pH值[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.