Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (5): 467-472    DOI: 10.11902/1005.4537.2017.013
  研究报告 本期目录 | 过刊浏览 |
烟尘对409不锈钢腐蚀行为的影响
陈聪聪1,杨勇1,张程1,毕洪运2,李谋成1()
1 上海大学材料研究所 上海 200072
2 宝山钢铁股份有限公司研究院 上海 201900
Effect of Soot on Corrosion Behavior of 409 Stainless Steel
Congcong CHEN1,Yong YANG1,Cheng ZHANG1,Hongyun BI2,Moucheng LI1()
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China
全文: PDF(1039 KB)   HTML
摘要: 

采用氧化-浸泡-蒸发循环实验与电化学阻抗谱、XRD、SEM、腐蚀坑深度和腐蚀失重等测量方法,研究了汽车消声器环境中409不锈钢在烟尘作用下的腐蚀行为。结果表明,有/无烟尘作用条件下,试样表面形成的腐蚀产物相似,但烟尘会使试样的腐蚀电位略升高,并且腐蚀坑深度和腐蚀失重增加,这主要是因为烟尘与409不锈钢间具有一定的电偶腐蚀效应,减小了腐蚀体系的电荷转移电阻,从而加剧了409不锈钢在冷凝液中的腐蚀。

关键词 烟尘汽车排气系统腐蚀不锈钢    
Abstract

The influence of soot on the corrosion behavior of 409 stainless steel for automotive muffler was studied by means of oxidation-immersion-evaporation cycle test with electrochemical impedance spectroscopy, XRD, SEM as well as pitting depth-and corrosion weight loss-measurement. The results show that the corrosion products formed on the sample surfaces are similar in the condensate liquids with and without soot. However, the corrosion potential increases lightly and both the pitting depth and weight loss become higher for the steel in the presence of soot. These can be attributed mainly to the galvanic effect between deposited soot and the stainless steel, which reduces the charge transfer resistance of the corrosion system and accelerates the corrosion of 409 stainless steel in the condensate solution.

Key wordssoot    automotive exhaust system    corrosion    stainless steel
收稿日期: 2017-01-18     
基金资助:国家自然科学基金 (51134010和U1660205) 及上海市科学技术委员会支撑项目 (15XD1520100)
作者简介: 陈聪聪,男,1992年生,硕士生

引用本文:

陈聪聪,杨勇,张程,毕洪运,李谋成. 烟尘对409不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 467-472.
Congcong CHEN, Yong YANG, Cheng ZHANG, Hongyun BI, Moucheng LI. Effect of Soot on Corrosion Behavior of 409 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(5): 467-472.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.013      或      https://www.jcscp.org/CN/Y2017/V37/I5/467

图1  两种试样的腐蚀电位随循环周期的变化曲线
图2  有/无烟尘组试样在循环实验过程中的电化学阻抗谱
图3  有/无烟尘组试样表面在腐蚀产物去除前/后的SEM像
图4  试样经50次循环实验后表面腐蚀产物的XRD谱
图5  试样表面10个最深点蚀坑的深度值
图6  试样在冷凝液中腐蚀的等效电路模型
图7  两组试样在不同循环实验次数时Rf和Rt的拟合值
[1] Liu Q, Liu Y, Xu J T.Economic and environmental effects of improved auto fuel economy standard in China: A CGE analysis[J]. Acta Sci. Natur. Univ. Pekinensis, 2016, 52: 515
[1] (柳青, 刘宇, 徐晋涛. 汽车尾气排放标准提高的经济影响与减排效果——基于可计算一般均衡(CGE)模型的分析[J]. 北京大学学报自然科学版, 2016, 52: 515)
[2] Yan H T, Li X, Bi H Y, et al. Corrosion failure analysis of automobile muffler[J]. Phys. Test. Chem. Anal. Phys. Test., 44A: 150
[2] (颜海涛, 李鑫, 毕洪运等. 汽车消声器的腐蚀失效分析[J]. 理化检验-物理分册, 2008, 44A: 150)
[3] Zhou T.Automobile exhaust components and purification methods[J]. Mod. Enterpries Educ., 2012, (23): 287
[3] (周婷. 汽车尾气成分及其净化方式[J]. 现代企业教育, 2012, (23): 287)
[4] Li M C, Wang S D, Ma R Y, et al.Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16: 3059
[5] Ruan W H, Wang S D, Li M C, et al.Corrosion behavior of 409 ferritic stainless steel in condensate solution of automotive mufflers[J]. Corros. Sci. Prot. Technol., 2012, 24: 301
[5] (阮伟慧, 王士栋, 李谋成等. 409不锈钢在消声器冷凝液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24: 301)
[6] Ma R Y, Li M C, Shen J N.Effect of pH on condensate corrosion of type 409 stainless steel for automotive mufflers[J]. Corros. Prot., 2015, 36: 448
[6] (马荣耀, 李谋成, 沈嘉年. 冷凝液pH对消声器用409不锈钢腐蚀行为的影响[J]. 腐蚀与防护, 2015, 36: 448)
[7] Wang C P, Shen Y F, Chen C C, et al.Effect of exposure to steam on corrosion of type 439 stainless steel for automotive mufflers[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 165
[7] (汪长鹏, 申宇凤, 陈聪聪等. 蒸汽环境对消声器用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36: 165)
[8] Li M C, Zhang H, Huang R F, et al.Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers[J]. Corros. Sci., 2014, 80: 96
[9] Xu Z H, Wang C P, Shen Y F, et al.Condensates induced corrosion of stainless steels for automotive SCR system[J]. Corros. Sci. Prot. Technol., 2015, 27: 595
[9] (徐泽瀚, 汪长鹏, 申宇凤等. 汽车SCR系统用不锈钢的冷凝液腐蚀行为研究[J]. 腐蚀科学与防护技术, 2015, 27: 595)
[10] Li W Y, Wang J X, Che J W.Analysis on corresponding problems of WFGD flue gas wet emission[J]. Proc. CSEE, 2007, 27(14): 36
[10] (李文艳, 王冀星, 车建炜. 湿法脱硫烟气湿排问题分析[J]. 中国电机工程学报, 2007, 27(14): 36)
[11] Li Y H.Application of corrosion prevention and dust collector for gas chimney[J]. Chem. Fertil. Ind., 1989, (1): 39
[11] (李永恒. 煤气炉烟囱防腐蚀和除尘器应用[J]. 化肥工业, 1989, (1): 39)
[12] Zuo Z H.Causes of corrosion of coking gas pipes and preventive measures[J]. Metall. Power, 2014, (3): 23
[12] (左祖华. 焦炉煤气管道腐蚀原因与预防措施的探讨[J]. 冶金动力, 2014, (3): 23)
[13] AK Steel Corporation.Aluminized steel type 1 stainless 409 and 439 [A]. Product Data Bulletin[C]. West Chester, 2007: 1
[14] Wang Y, Tang Y, Xie C S, et al.The applications of the electrochemical impedance spectroscopy in the materials researches[J]. Mater. Rev., 2011, 25(13): 5
[14] (王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用[J]. 材料导报, 2011, 25(13): 5)
[15] Zhang H, Zhang G L, Liu X, et al.Condensate corrosion behavior of stainless steels for automotive mufflers[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 20
[15] (张辉, 张国利, 刘星等. 消声器用不锈钢的冷凝液腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 20)
[16] Ling C J, Mao Y, Tian Z W.Nature of corrosion resistance for the electrochemically modified passive film of 18-8 stainless steel I. The characteristics of chemical composition, structure and chemical heterogeneity of the passive film[J]. J. Chin. Soc. Corros. Prot., 1992, 12: 205
[16] (林昌健, 茅禹, 田昭武. 电化学改性不锈钢钝化膜的耐蚀机理研究I. 钝化膜的化学组分、结构及表面缺陷特征[J]. 中国腐蚀与防护学报, 1992, 12: 205)
[17] Sun M, Xiao K, Dong C F, et al.Electrochemical behaviors of ultra high strength steels with corrosion products[J]. Acta Metall. Sin., 2011, 47: 442
[17] (孙敏, 肖葵, 董超芳等. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47: 442)
[18] Wang J, Cao C N, Lin H C.Features of AC impedance of pitting corroded electrodes during pits propagation[J]. J. Chin. Soc. Corros. Prot., 1989, 9: 271
[18] (王佳, 曹楚南, 林海潮. 孔蚀发展期的电极阻抗频谱特征[J]. 中国腐蚀与防护学报, 1989, 9: 271)
[19] Li Q, Xie Y L, Zhong Y J, et al.Research progress in technologies for the abatement of soot particles from diesel engines[J]. J. Zhejiang Normal Univ.(Nat. Sci.), 2009, 32: 97
[19] (李倩, 谢云龙, 钟依均等. 柴油机碳颗粒物净化技术的研究进展[J]. 浙江师范大学学报(自然科学版), 2009, 32: 97)
[20] Jin X, Xiao C F, Yu C K, et al.Non-continuous conductive behavior of CB/PET fiber[J]. Chin. J. Mater. Res., 2010, 24: 311
[20] (金欣, 肖长发, 俞传坤等. 碳黑/聚酯纤维非连续性导电行为研究[J]. 材料研究学报, 2010, 24: 311)
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.