Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (4): 315-321    DOI: 10.11902/1005.4537.2016.115
  综合评述 本期目录 | 过刊浏览 |
扫描振动电极技术在腐蚀领域的应用进展
张彭辉1(), 逄昆1, 丁康康1, 孔祥峰2, 彭欣3
1 中国船舶重工集团公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266101
2 中国海洋大学化学化工学院 青岛 266100
3 山东交通学院船舶与轮机工程学院 威海 264200
Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion
Penghui ZHANG1(), Kun PANG1, Kangkang DING1, Xiangfeng KONG2, Xin PENG3
1 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
2 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
3 Naval Architacture & Marine Engineering College, Shandong Jiaotong University, Weihai 264200, China
全文: PDF(2463 KB)   HTML
摘要: 

概述了扫描振动电极技术的基本原理,并重点对该技术在材料局部腐蚀、缓蚀剂和涂层性能评价等方面的应用进展进行了阐述,最后对其目前应用的局限性进行了总结。

关键词 扫描振动电极技术微区局部腐蚀缓蚀剂涂层    
Abstract

In this paper, the basic principle of scanning vibrating electrode technique is simply interpreted. Especially, the research progress of scanning vibrating electrode technique in the field related with localized corrosion of materials, inhibitor and evaluation of coating performance is illustrated. In the end, the relevant limitations are summarized for the application of the technique.

Key wordsscanning vibrating electrode technique (SVET)    microzone    localized corrosion    inhibitor    coating
收稿日期: 2016-08-12     
ZTFLH:  TG174.3  
作者简介:

作者简介 张彭辉,男,1989年生,硕士,助理工程师

引用本文:

张彭辉, 逄昆, 丁康康, 孔祥峰, 彭欣. 扫描振动电极技术在腐蚀领域的应用进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 315-321.
Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 315-321.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.115      或      https://www.jcscp.org/CN/Y2017/V37/I4/315

图1  SVET测量原理示意图[8]
图2  探针距离电极表面不同距离时的离子电流线[11]
图3  浸泡20 min后焊缝SVET测试结果[20]
图4  最大电流密度随外加应力的变化[24]
图5  不同浸泡时间离子电流密度分布图[31]
图6  不同溶液中浸泡24 h后电极表面电流密度分布图[32]
[1] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[2] Peng X, Wang J, Shan C, et al.Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater[J]. Acta Metall. Sin., 2012, 48: 1260(彭欣, 王佳, 山川等. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48: 1260)
[3] Zou Y, Zheng Y Y, Wang Y H, et al.Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta Metall. Sin., 2010, 46: 123(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123)
[4] Liao X N, Cao F H, Zheng L Y, et al.Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53: 3289
[5] Müller W D, Nascimento M L, Zeddies M, et al.Magnesium and its alloys as degradable biomaterials. Corrosion studies using potentiodynamic and EIS electrochemical techniques[J]. Mater. Res., 2007, 10: 5
[6] Liu X W, Xiong J P, Lv Y W, et al.Study on corrosion electrochemical behavior of several different coating systems by EIS[J]. Prog. Org. Coat., 2009, 64: 497
[7] Fan L, Ding K K, Guo W M, et al.Effect of hydrostatic pressure and pre-stress on corrosion behavior of a new type Ni-Cr-Mo-V high strength steel[J]. Acta Metall. Sin., 2016, 52: 679(范林, 丁康康, 郭为民等. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 金属学报, 2016, 52: 679)
[8] Bastos A C, Sim?es A M, Ferreiraa M G.Corrosion of electrogalvanized steel in 0.1 M NaCl studied by SVET[J]. Port. Electrochim. Acta, 2003, 21: 371
[9] Oltra R, Maurice V, Akid R, et al.Local Probe Techniques for Corrosion Research [M]. Cambridge: Woodhead Publishing Limited, 2007
[10] Deshpande K B.Experimental investigation of galvanic corrosion: comparison between SVET and immersion techniques[J]. Corros. Sci., 2010, 52: 2819
[11] Sim?es A M, Bastos A C, Ferreira M G, et al.Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell[J]. Corros. Sci., 2007, 49: 726
[12] Souto R M, González-García Y, Bastos A C, et al.Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron[J]. Corros. Sci., 2007, 49: 4568
[13] Battocchi D, He J, Bierwagen G P, et al.Emulation and study of the corrosion behavior of Al alloy 2024-T3 using a wire beam electrode (WBE) in conjunction with scanning vibrating electrode technique (SVET)[J]. Corros. Sci., 2005, 47: 1165
[14] Donatus U, Thompson G E, Liu H, et al.Understanding the galvanic interactions between AA2024T3 and mild steel using the scanning vibrating electrode technique[J]. Mater. Chem. Phys., 2015, 161: 228
[15] Deshpande K B.Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments[J]. Corros. Sci., 2012, 62: 184
[16] Vuillemin B, Philippe X, Oltra R, et al.SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection[J]. Corros. Sci., 2003, 45: 1143
[17] Krawiec H, Vignal V, Oltra R.Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions[J]. Electrochem. Commun., 2004, 6: 655
[18] Manhabosco S M, Pritzel dos Santos á, Marcolin M L, et al. Localized corrosion of laser marked M340 martensitic stainless steel for biomedical applications studied by the scanning vibrating electrode technique under polarization[J]. Electrochim. Acta, 2016, 200: 189
[19] Wang L W, Du C W, Liu Z Y, et al.SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution[J]. Corros. Prot., 2012, 33: 935(王力伟, 杜翠薇, 刘智勇等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究[J]. 腐蚀与防护, 2012, 33: 935)
[20] Wang S Y, Ding J, Ming H L, et al.Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J]. Mater. Charact., 2015, 100: 50
[21] Wang L W, Liu Z Y, Cui Z Y, et al.In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corros. Sci., 2014, 85: 401
[22] Wang L W, Li X G, Du C W, et al.In-situ corrosion characterization of API X80 steel and its corresponding HAZ microstructures in an acidic environment[J]. J. Iron Steel Res. Int., 2015, 22: 135
[23] Luo S J, Wang R.Identification of the selective corrosion existing at the seam weld of electric resistance-welded pipes[J]. Corros. Sci., 2014, 87: 517
[24] Manhabosco S M, Batista R J C, Silva S N D, et al. Determination of current maps by SVET of hot-dip galvanized steel under simultaneous straining[J]. Electrochim. Acta, 2015, 168: 89
[25] Zhang G A, Cheng Y F.Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution[J]. Electrochim. Acta, 2009, 55: 316
[26] Zhang G A, Cheng Y F.Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution[J]. Corros. Sci., 2009, 51: 1714
[27] Xu L Y, Cheng Y F.Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corros. Sci., 2012, 64: 145
[28] Sun M, Xiao K, Dong C F, et al.Effect of stress on electrochemical characteristics of pre-cracked ultrahigh strength stainless steel in acid sodium sulphate solution[J]. Corros. Sci., 2014, 89: 137
[29] Mouanga M, Andreatta F, Druart M E, et al.A localized approach to study the effect of cerium salts as cathodic inhibitor on iron/aluminum galvanic coupling[J]. Corros. Sci., 2015, 90: 491
[30] Coelho L B, Mouanga M, Druart M E, et al.A SVET study of the inhibitive effects of benzotriazole and cerium chloride solely and combined on an aluminium/copper galvanic coupling model[J]. Corros. Sci., 2016, 110: 143
[31] Sim?es A M, Fernandes J C S. Studying phosphate corrosion inhibition at the cut edge of coil coated galvanized steel using the SVET and EIS[J]. Prog. Org. Coat., 2010, 69: 219
[32] Bastos A C, Ferreira M G, Sim?es A M.Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET[J]. Corros. Sci., 2006, 48: 1500
[33] Marques A G, Sim?es A M.EIS and SVET assessment of corrosion resistance of thin Zn-55% Al-rich primers: Effect of immersion and of controlled deformation[J]. Electrochim. Acta, 2014, 148: 153
[34] Yan M C, Gelling V J, Hinderliter B R, et al.SVET method for characterizing anti-corrosion performance of metal-rich coatings[J]. Corros. Sci., 2010, 52: 2636
[35] Gustavsson J M, Innis P C, He J, et al.Processable polyaniline-HCSA/poly (vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3: A SVET and Raman study[J]. Electrochim. Acta, 2009, 54: 1483
[36] Sim?es A, Battocchi D, Tallman D, et al.Assessment of the corrosion protection of aluminium substrates by a Mg-rich primer: EIS, SVET and SECM study[J]. Prog. Org. Coat., 2008, 63: 260
[37] Tedim J, Bastos A C, Kallip S, et al.Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results[J]. Electrochim. Acta, 2016, 210: 215
[38] Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al.Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies[J]. Corros. Sci., 2016, 102: 269
[39] Bastos A C, Zheludkevich M L, Ferreira M G S. A SVET investigation on the modification of zinc dust reactivity[J]. Prog. Org. Coat., 2008, 63: 282
[40] de Vooys A, van der Weijde H. Investigating cracks and crazes on coated steel with simultaneous SVET and EIS[J]. Prog. Org. Coat., 2011, 71: 250
[41] Tian Z H, Shi H W, Liu F C, et al.Inhibiting effect of 8-hydroxyquinoline on the corrosion of silane-based sol-gel coatings on AA 2024-T3[J]. Prog. Org. Coat., 2015, 82: 81
[1] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[7] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[8] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[9] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[10] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[12] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[13] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[14] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[15] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.