Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 395-403    DOI: 10.11902/1005.4537.2019.154
  综合评述 本期目录 | 过刊浏览 |
先进高温热障涂层用高性能粘接层制备及研究进展
余春堂1,阳颖飞2,鲍泽斌1(),朱圣龙1
1. 中国科学院金属研究所金属腐蚀与防护实验室 沈阳 110016
2. 暨南大学先进耐磨蚀及功能材料研究院 广州 510632
Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings
YU Chuntang1,YANG Yingfei2,BAO Zebin1(),ZHU Shenglong1
1. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Institute of Advanced Wear & Corrosion Resistant and Functional Material, Jinan University, Guangzhou 510632, China
全文: PDF(8711 KB)   HTML
摘要: 

热障涂层能显著提高航空发动机的效率和推重比,具备保护关键热端部件 (例如涡轮叶片) 能力而获得广泛运用,其构成一般由外表面的陶瓷隔热层和抗高温氧化的中间粘接层组成。在热障涂层体系中,粘接层抗高温氧化性能的好坏直接决定了热障涂层体系的服役性能和寿命,因此受到相关研究者的关注。金属Pt改性的粘接层具有优异的抗高温氧化和热腐蚀综合性能,特别是表面生成的连续致密Al2O3氧化膜抗剥落性强,是高温防护金属粘结层的优选方案。本文重点介绍了Pt改性MCrAlY粘接层和Pt改性铝化物涂层的研究现状和进展,并且论述了制备方法与原理及其特点,对先进Pt改性粘接层的发展趋势进行了展望。

关键词 热障涂层MCrAlY铂铝涂层活性元素    
Abstract

Thermal barrier coatings (TBCs) are widely used in hot section of gas turbine engines, holding excellent protection properties at high temperature, with the goal of improving engine efficiency and reducing the operation cost. Generally, a typical TBC is composed of a ceramic topcoat and an oxidation-resistant bond coat, while, the oxidation performance of the bond coat directly determines the overall performance and lifetime of the whole TBC. Thus, the challenge of TBCs operating at higher temperature and harsher environments has attracted the relevant researchers to develop advanced bond coats. Pt-modified aluminide coatings, possessing excellent oxidation resistance, are capable of forming a continuously dense Al2O3 scale with low tendency of spallation during exposure at elevated temperature. In the present paper, special attention is devoted to review the development and status of Pt- modified bond coats, including MCrAlY and nickel aluminides, as well as the merits and deficiency of such coatings have been elucidated. At last, the perspectives of manufacturing an advanced bond coat and the development trend are summarized.

Key wordsthermal barrier coating    MCrAlY    Pt-modified aluminide coating    reactive element
收稿日期: 2019-09-12     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51301184)
通讯作者: 鲍泽斌     E-mail: zbbao@imr.ac.cn
Corresponding author: Zebin BAO     E-mail: zbbao@imr.ac.cn
作者简介: 余春堂,男,1987年生,博士生

引用本文:

余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
Chuntang YU, Yingfei YANG, Zebin BAO, Shenglong ZHU. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 395-403.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.154      或      https://www.jcscp.org/CN/Y2019/V39/I5/395

图1  Pt改性NiCoCrAlY粘接层制备流程图[18]
图4  普通NiCoCrAlY-4YSZ和Pt改性的NiCoCrAlY-4YSZ热障涂层于1100 ℃下循环氧化1000次后的截面形貌[19]
图2  不同方式电镀Pt改性的NiCoCrAlY涂层的氧化增重曲线以及氧化后表面XRD谱[18]
图3  Pt改性NiCoCrAlY-4YSZ制备态截面元素分布和热障涂层体系循环氧化增重对比[19]
图5  Ni-Pt-Al在1100 ℃下的三元相图和β-(Ni,Pt) Al和γ/γ'铂铝涂层循环氧化增重对比[20]
图6  酸性、碱性电镀铂制备的 (Ni,Pt)Al涂层于1100 ℃下恒温氧化300 h氧化动力学曲线[21]
图7  酸性碱性电镀铂制备的 (Ni,Pt)Al涂层于1100 ℃下高温氧化300 h后的表面形貌[21]
图8  酸性电镀铂制备 (Ni,Pt)Al涂层于1100 ℃下循环氧化中发生的氧化膜剥落现象[21]
图9  酸性和碱性电镀铂制备的 (Ni,Pt)Al涂层于1100 ℃下氧化20 h后TOF-SIMS分析[21]
图10  普通 (Ni,Pt)Al与Hf改性 (Ni,Pt)Al恒温氧化动力学对比[23]
图11  普通 (Ni,Pt)Al与Hf改性 (Ni,Pt)Al涂层恒温氧化后截面形貌对比[23]
图12  普通 (Ni,Pt)Al与Hf改性 (Ni,Pt)Al在1100 ℃下氧化20 h后的表面形貌[23]
1 BeeleW, MarijnissenG, Van LieshoutA. The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues [J]. Surf. Coat. Technol., 1999, 120/121: 61
2 PadtureN P, GellM, JordanE H.Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
3 GoswamiB, RayA K, SahayS K.Thermal barrier coating system for gas turbine application-a review [J]. High Temp. Mater. Process.,2004, 23: 211
4 FanX L, LiD J, LvB W, et al. Advances in the fundamentals of the manufacture ofindustrial gas turbine [J]. China Basic Sci., 2008, 20(2): 32
4 范学领, 李定骏, 吕伯文等. 国之重器, 十载砥砺—重型燃气轮机制造基础研究进展 [J]. 中国基础科学, 2018, 20(2): 32
5 ZongR F, WuF S, FengJ.Research and application of rare earth tantalate ceramics forthermal barrier coatings [J]. Aeronaut.Manuf. Technol., 2019, 62(3): 20
5 宗若菲, 吴福硕, 冯晶.稀土钽酸盐在热障涂层中的研究与应用 [J]. 航空制造技术, 2019, 62(3): 20
6 EvansA G, MummD R, HutchinsonJ W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
7 ChenW R, WuX, MarpleB R, et al.The growth and influence of thermally grown oxide in a thermal barrier coating [J]. Surf. Coat.Technol., 2006, 201: 1074
8 YaoH R, BaoZ B, ShenM L, et al.A magnetron sputtered microcrystalline β-NiAl coating for SC superalloys. Part II. Effects of a NiCrO diffusion barrier on oxidation behavior at 1100 ℃ [J]. Appl. Surf. Sci., 2017, 407: 485
9 WarnesB M. Improved aluminide/MCrAlX coating systems for super alloys using CVD low activity aluminizing [J]. Surf. Coat. Technol., 2003, 163/164: 106
10 HouS J, ZhuS L, ZhangT, et al. A magnetron sputtered microcrystalline β-NiAl coating for SC superalloys. Part I. Characterization and comparison of isothermal oxidation behavior at 1100 ℃ with a NiCrAlY coating [J]. Appl. Surf. Sci., 2015, 324: 1
11 WangM Y, WangH, ZhangK, et al. Research progress on high temperature resistance of MCrAlYX alloy coating [J]. Therm. Spray Technol., 2015, 7(2): 12
11 王梦雨, 王辉, 张康等. 耐高温MCrAlYX合金涂层研究进展 [J]. 热喷涂技术, 2015, 7(2): 12
12 RabieiA, EvansAG.Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J]. Acta Mater., 2000, 48: 3963
13 DongH, YangG J, LiC X, et al. Effect of TGO thickness on thermal cyclic lifetime and failure mode of plasma-sprayed TBCs [J]. J. Am. Ceram. Soc., 2014, 97: 1226
14 YuH T, SongX W, MuR D, et al. Research of YSZ thermal barrier coatings produced by EB-PVD [J]. Chin. Rare Earth, 2011, 32(3): 40
14 于海涛, 宋希文, 牟仁德等. 电子束物理气相沉积YSZ热障涂层研究 [J]. 稀土, 2011, 32(3): 40
15 GotoT. Thermal barrier coatings deposited by laser CVD [J]. Surf. Coat. Technol., 2005, 198: 367
16 WangS L. Preparation and anti-ablation properties of SiC and ZrCcoatings though chemical vapor deposition [D]. Xi'an: Northwestern Polytechnical University, 2015
16 王少龙. 化学气相沉积SiC和ZrC涂层的制备及抗烧蚀性能 [D]. 西安: 西北工业大学, 2015
17 HeM T, MengH M, WangY C, et al. Research and development of advanced thermal barrier coating materials and preparation technology [J]. Powder Metall. Technol., 2019, 37: 62
17 何明涛, 孟惠民, 王宇超等. 新型热障涂层材料及其制备技术的研究与发展 [J].粉末冶金技术, 2019, 37: 62
18 YangY F, YaoH R, BaoZ B, et al.Modification of NiCoCrAlY with Pt: Part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
19 YuC T, LiuH, JiangC Y, et al.Modification of NiCoCrAlY with Pt: Part II. Application in TBC with pure metastable tetragonal (t′) phase YSZ and thermal cycling behavior [J]. J. Mater. Sci. Technol., 2019, 35: 350
20 DasD K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
21 YuC T, LiuH, UllahA, et al.High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100 ℃: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
22 ZhangY, LeeW Y, HaynesJ A, et al. Synthesis and cyclic oxidation behavior of a (Ni, Pt)Al coating on a desulfurized Ni-base superalloy [J]. Metall. Mater. Trans., 1999, 30A: 2679
23 YangY F, JiangC Y, YaoH R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
24 YangY F, JiangC Y, YaoH R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
[1] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[2] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[3] 李新慧,马文,尹轶川,马伯乐,白玉,贾瑞灵,董红英. 液相等离子喷涂SrZrO3热障涂层工艺的研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[4] 蔡丽丽,马文,李新慧,尹轶川,马伯乐,白玉,王俊,董红英. (Gd0.7Sr0.3)ZrO3.35涂层的CaO-MgO-Al2O3-SiO2(CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[5] 张珊榕,董红英,马文,尹轶川,李新慧,白玉,贾瑞灵. 等离子喷涂SrZrO3热障涂层的CaO-MgO-Al2O3-SiO2 (CMAS) 腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[6] 黄嘉鹏,杨斌,汪航. 稀土 (Y,La,Ce) 复合添加对Ni-10Cr-5Al合金在1000 ℃下高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[7] 陈琛, 郭洪波, 宫声凯. 横向梯度温度场下热障涂层的失效分析[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[8] 李美姮; 管恒荣 . 热障涂层的性能评价[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[9] 李云端; 张春霞; 宫声凯; 徐惠彬 . 单面沉积热障涂层失效模式的研究[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[10] 邓畅光; 邝子奇 . 稀土硅铁对TBCs梯度热障涂层组织与性能影响的研究[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[11] 陈和兴; 金展鹏; 周克崧 . 热障涂层中NiCrAlY-ZrO2界面特性的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
[12] 毕晓日方; 郭洪波; 宫声凯; 徐惠彬 . 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[13] 李美桓; 孙晓峰; 宫声凯; 张重远; 管恒荣; 胡望宇; 胡壮麒 . EB-PVD热障涂层高温氧化过程中的显微结构和相分析[J]. 中国腐蚀与防护学报, 2002, 22(2): 105-110 .
[14] 张重远; 李美恒; 孙晓峰 . 单晶高温合金热障涂层的循环氧化行为[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .