Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 168-174    DOI: 10.11902/1005.4537.2017.001
  研究报告 本期目录 | 过刊浏览 |
显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响
滕彧,陈旭(),何川,王义闯,王冰
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB
Yu TENG,Xu CHEN(),Chuan HE,Yichuang WANG,Bing WANG
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(3841 KB)   HTML
摘要: 

通过空冷、水冷和炉冷3种热处理方法得到不同显微组织的X70钢。采用SEM和EDS分析了不同显微组织X70钢在含有硫酸盐还原菌 (SRB) 的3.5% (质量分数) NaCl溶液中的腐蚀形貌和腐蚀产物成分。采用动电位极化和电化学阻抗谱技术研究不同显微组织X70钢的电化学行为。结果表明,X70钢的原始组织为铁素体+珠光体;空冷组织为粒状珠光体分布在铁素体晶界上;炉冷组织由片状珠光体和先共析铁素体组成;水冷组织主要由板条状马氏体和少量块状铁素体组成。各热处理条件下试样在有菌介质中浸泡初期表面覆盖一层致密的生物膜,对电极起到了保护作用。水冷和空冷试样表面生物膜在浸泡第8和10 d后破裂,而炉冷和原始试样表面的生物膜完整性则较好;在有SRB的3.5%NaCl溶液中X70钢炉冷试样的耐蚀性最好,水冷试样的耐蚀性最差。

关键词 X70钢显微组织硫酸盐还原菌电化学腐蚀    
Abstract

X70 steels with different microstructure were obtained by heat treating at 1050 ℃ for 3 h and subsequently air cooling, water cooling and furnace cooling respectively. Corrosion behavior of the X70 steels with different microstructure in 3.5%(mass fraction)NaCl solution with sulfate reducing bacteria (SRB) was studied by means of potentiodynamic polarization measurement and electrochemical impedance spectroscopy (EIS) as well as SEM and EDS. The results showed that the as received X70 steel shows a microstructure composed of ferrite and pearlite; the air cooling steel composed of globular pearlite distributed along the ferrite grain boundaries; furnace cooling steel composed of lamellar pearlite and proeutectoid ferrite and water cooling one composed mainly of lath martensite and a small amount of blocky ferrite. In the initial stage of corrosion in 3.5%NaCl solution with sulfate reducing bacteria (SRB), the test steels were all covered with a compact biofilm, which played a roll in protection to the substrate. However fractures occurred for the biofilms formed on the water cooling- and air cooling-steels after immersion for 8 and 10 d respectively, while the biofilms kept integrity on the furnace cooling- and as received-steels. The corrosion resistance of the furnace cooling- steel was best, and the water cooling-steel was worst in 3.5%NaCl solution with SRB.

Key wordsX70 steel    microstructure    sulfate reducing bacteria    electrochemical    corrosion
收稿日期: 2017-01-03     
基金资助:国家自然科学基金 (51201009) 和辽宁省自然科学基金 (2013020078)

引用本文:

滕彧,陈旭,何川,王义闯,王冰. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
Yu TENG, Xu CHEN, Chuan HE, Yichuang WANG, Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 168-174.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.001      或      https://www.jcscp.org/CN/Y2017/V37/I2/168

图1  不同条件热处理的X70钢的显微组织
图2  不同条件热处理的X70钢试样在含有SRB的3.5%NaCl溶液中浸泡14 d后的SEM像和EDS结果
图3  不同条件热处理的X70钢在含有SRB的3.5%NaCl溶液中的自腐蚀电位
图4  不同条件热处理的X70钢在含有SRB的3.5%NaCl溶液中的极化曲线
Heat condition Ecorr / V Icorr / μAcm2
Untreated -0.832 2.53
Furnace cooling -0.835 0.66
Water-cooling -0.828 4.68
Air-cooling -0.905 3.475
表1  极化曲线的拟合结果
图5  不同条件热处理的X70钢在含有SRB的3.5%NaCl溶液中的EIS
图6  EIS等效电路
Heat condition Rs / Ωcm2 Qf / Fcm-2 n1 Rf / Ωcm2 Qdl / Fcm-2 n2 Rct / Ωcm2
Untreated 6.74 9.74×10-4 0.92 3.11×104 2.5×10-3 1.00 1.11×104
Furnace-cooling 8.04 1.00×10-3 0.93 3.08×104 1.0×10-4 1.00 2.44×104
Water-cooling 10.03 1.99×10-3 0.93 1.02×104 4.8×10-4 0.74 3.48×102
Air-cooling 8.51 1.43×10-2 0.63 1.86×10 7.2×10-3 0.90 4.48×104
表2  EIS等效电路拟合结果
[1] Du J B, Yin Y S, Teng S L, et al.Marine microbial corrosion research progress[J]. Shandong Metall., 2007, 29(S1): 1
[1] (杜建波, 尹衍生, 滕少磊等. 海洋微生物腐蚀研究进展[J]. 山东冶金, 2007, 29(S1): 1)
[2] Liu G Z, Wu J H.Advances in the study of microbiologically influenced corrosion in marine environment[J]. Corros. Prot., 2001, 22: 430
[2] (刘光洲, 吴建华. 海洋微生物腐蚀的研究进展[J]. 腐蚀与防护, 2001, 22: 430)
[3] Li X B, Wang J, Guo W M, et al.Effect of biofilm on the electrochemical passivity of stainless steel[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 295
[3] (李相波, 王佳, 郭为民等. 微生物附着对不锈钢钝化性能的影响[J]. 中国腐蚀与防护学报, 2006, 26: 295)
[4] Li C L, Ma Y T, Li Y, et al.Corrosion mechanism of Mo/Nd16Fe71B13/Mo film in a simulated marine atmosphere[J]. Corros. Sci., 2011, 53: 2549
[5] Hao L, Zhan S X, Dong J H, et al.Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments[J]. Corros. Sci., 2011, 53: 4187
[6] Mu X, Wei J, Dong J H, et al.Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone[J]. Acta Metall. Sin., 2012, 48: 420
[6] (穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究[J]. 金属学报, 2012, 48: 420)
[7] ?rnek D, Jayaraman A, Wood T K, et al.Pitting corrosion control using regenerative biofilms on aluminium 2024 in artificial seawater[J]. Corros. Sci., 2001, 43: 2121
[8] Liu T, Zhang Y F, Chen X, et al.Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 112
[8] (刘彤, 张艳飞, 陈旭等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34: 112)
[9] Du C W, Liu Z Y, Liang P, et al.Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water[J]. Heat Treat. Met., 2008, 33(6): 80
[9] (杜翠薇, 刘智勇, 梁平等. 不同组织X70钢在库尔勒含饱和水土壤中的短期腐蚀行为[J]. 金属热处理, 2008, 33(6): 80)
[10] Zhai G L, Liu Z Y, Du C W, et al.Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution[J]. Corros. Prot., 2009, 30: 149
[10] (翟国丽, 刘智勇, 杜翠薇等. 不同组织X70钢在酸性土壤模拟溶液中的应力腐蚀敏感性[J]. 腐蚀与防护, 2009, 30: 149)
[11] Zhao Y L, Liu W, Lu M X.Effect of soaking time on SRB electrochemical corrosion behavior of X60 steel[J]. Equip. Environ. Eng., 2007, 4(3): 53
[11] (赵艳亮, 柳伟, 路民旭. 浸泡时间对X60钢SRB电化学腐蚀行为影响研究[J]. 装备环境工程, 2007, 4(3): 53)
[12] Song B Q, Chen X, Ma G Y, et al.Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution[J]. Trans. Mater. Heat Treat., 2016, 37(4): 122
[12] (宋博强, 陈旭, 马贵阳等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响[J]. 材料热处理学报, 2016, 37(4): 122)
[13] Liu X B, Xi G D, Yu D L, et al.Corrosion behavior of X60 pipeline steel in diesel oil[J]. Mater. Prot., 2016, 49(6): 60
[13] (刘贤斌, 冼国栋, 余东亮等. X60管线钢在柴油中的腐蚀行为[J]. 材料保护, 2016, 49(6): 60)
[14] Zhang D L, Wang W, Li Y.An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion[J]. Corros. Sci., 2010, 52: 1277
[15] Zheng Y Y, Zou Y, Wang J.Research progress on corrosion of carbon steels under rust layer in marine environment[J]. Corros. Sci. Prot. Technol., 2011, 23: 93
[15] (郑莹莹, 邹妍, 王佳. 海洋环境中锈层下碳钢腐蚀行为的研究进展明[J]. 腐蚀科学与防护技术, 2011, 23: 93)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[13] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[14] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[15] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.