Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (1): 9-15    DOI: 10.11902/1005.4537.2016.088
  研究报告 本期目录 | 过刊浏览 |
Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究
张乃强1,岳国强1,吕法彬1,曹琦1,李梦源2,徐鸿1()
1 华北电力大学 电站设备状态监测与控制教育部重点实验室 北京 102206
2 国网节能服务有限公司 北京 102206
Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam
Naiqiang ZHANG1,Guoqiang YUE1,Fabin LV1,Qi CAO1,Mengyuan LI2,Hong XU1()
1 Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
2 State Grid Energy Conservation Service CO. LTD., Beijing 102206, China
全文: PDF(1038 KB)   HTML
摘要: 

针对700 ℃超超临界汽轮机候选材料镍基合金Inconel 625,在700~750 ℃空气和水蒸气交替环境以及在0~8000 μg/L溶解氧浓度的高温水蒸气环境下进行应力腐蚀裂纹扩展速率 (CGR) 实验研究。采用恒应力强度因子 (K) 的力学加载方式进行加载,采用直流电位降法 (DCPD) 对CGR进行在线检测。结果表明:Inconel 625合金在水蒸气环境中的CGR比空气环境中的大,温度越高CGR越大;随着水蒸气中溶解氧含量的增加,CGR增大。并对温度、介质环境和溶解氧含量对应力腐蚀开裂CGR的影响机理进行了讨论。

关键词 镍基合金应力腐蚀开裂裂纹扩展速率溶解氧    
Abstract

Stress corrosion crack growth rate (CGR) tests of nickel-based alloy Inconel 625, as a candidate material for 700 ℃ ultra-supercritical steam turbine, has been completed at 700~750 ℃ in environments of alternating air and water vapor, as well as in steam with 0~8000 μg/L dissolved oxygen. The applied load is constant stress with intensity factor (K) and the crack growth rate is detected online by measuring the direct current potential drop (DCPD). Results show that the CGR in water vapor is greater than in air and which increases with increasing temperature and dissolved oxygen content. The mechanisms concerning the influence of temperature, medium environment and dissolved oxygen content on stress corrosion cracking are discussed.

Key wordsNickel-based alloy    stress corrosion cracking    crack growth rate    dissolved oxygen
收稿日期: 2016-06-29     
基金资助:国家自然科学基金 (51471069)

引用本文:

张乃强,岳国强,吕法彬,曹琦,李梦源,徐鸿. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
Naiqiang ZHANG, Guoqiang YUE, Fabin LV, Qi CAO, Mengyuan LI, Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 9-15.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.088      或      https://www.jcscp.org/CN/Y2017/V37/I1/9

图1  0.5T-CT试样的尺寸
图2  高温水蒸气环境应力腐蚀裂纹扩展实验系统简图
Test step Temperature / ℃ Medium environment Loading method CGR / mms-1 Duration / h
S1 700 Air Constant K 3.39×10-8 146
S2 700 Water vapor Constant K 5.43×10-8 161
S3 750 Air Constant K 4.66×10-7 145
S4 750 Water vapor Constant K 5.06×10-7 148
S5 725 Air Constant K 1.48×10-7 156
S6 725 Water vapor Constant K 2.08×10-7 172
表1  Inconel 625合金在高温空气和水蒸气中的实验条件和结果
图3  Inconel 625合金在700~750 ℃空气和水蒸气环境中的SCC裂纹扩展长度随时间变化曲线
图4  裂纹扩展实验后Inconel 625合金试样的断面形貌
图5  SEM观察下Inconel 625合金试样的裂纹全貌
Test step DO / μgL-1 Loading method CGR / mms-1 Duration / h
S1 8000 Constant K 2.24×10-7 118
S2 <10 Constant K 8.73×10-8 130
S3 2000 Constant K 1.14×10-7 132
S4 4000 Constant K 1.29×10-7 129
S5 6000 Constant K 1.50×10-7 107
表2  Inconel 625合金在725 ℃下不同溶解氧水蒸气环境中的SCC实验条件和结果
图6  Inconel 625合金在725 ℃水蒸气环境中SCC裂纹扩展长度随溶解氧含量的变化曲线
图7  裂纹扩展速率与温度的Arrhenius图
Temperature / ℃ Air Water vapor Times
CGR / mms-1
700 3.39×10-8 5.43×10-8 1.602
725 1.48×10-7 2.08×10-7 1.405
750 4.66×10-7 5.06×10-7 1.086
表3  空气和水蒸气环境下SCC裂纹扩展速率的对比
图8  Inconel 625合金裂纹扩展速率随溶解氧含量的变化
[1] Wang T J, Fan H, Zhang B Q, et al.Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃[J]. Dongfang Turbine, 2012, (2): 46
[1] (王天剑, 范华, 张邦强等. 700 ℃超超临界汽轮机关键部件用镍基高温合金选材[J]. 东方汽轮机, 2012, (2): 46)
[2] Takeda Y, Kanaya M, Yamamoto S, et al.Oxidation and cracking behavior of nickel base super-alloys under bending stress in advanced steam condition beyond 700 ℃ [A]. Challenges of Power Engineering and Environment[M]. Berlin Heidelberg: Springer, 2007: 1031
[3] Andresen P L, Emigh P W, Young L M, et al.Stress corrosion crack growth rate behavior of Ni alloys 182 and 600 in high temperature water [A]. CORROSION 2002[C]. Denver: NACE International, 2002
[4] Lu Z P, Shoji T, Takeda Y, et al.Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J]. Corros. Sci., 2008, 50: 561
[5] Peng Q J, Kwon J, Shoji T.Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water[J]. J. Nucl. Mater., 2004, 324: 52
[6] Xue H, Li Z J, Lu Z P, et al.The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment[J]. Nucl. Eng. Des., 2011, 241: 731
[7] Lu Z P, Shoji T, Takeda Y, et al.The dependency of the crack growth rate on the loading pattern and temperature in stress corrosion cracking of strain-hardened 316L stainless steels in a simulated BWR environment[J]. Corros. Sci., 2008, 50: 698
[8] Lu Z P, Shoji T, Takeda Y, et al.Effects of loading mode and water chemistry on stress corrosion crack growth behavior of 316L HAZ and weld metal materials in high temperature pure water[J]. Corros. Sci., 2008, 50: 625
[9] Lu Y H, Peng Q J, Sato T, et al.An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water[J]. J. Nucl. Mater., 2005, 347: 52
[10] Peng Q J, Shoji T, Yamauchi H, et al.Intergranular environmentally assisted cracking of Alloy 182 weld metal in simulated normal water chemistry of boiling water reactor[J]. Corros. Sci., 2007, 49: 2767
[11] Seifert H P, Ritter S, Shoji T, et al.Environmentally-assisted cracking behaviour in the transition region of an Alloy 182/SA 508 C1. 2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment[J]. J. Nucl. Mater., 2008, 378: 197
[12] Dan T, Shoji T, Lu Z P, et al.Effects of hydrogen on the anodic behavior of Alloy 690 at 600 ℃[J]. Corros. Sci., 2010, 52: 1228
[13] Han E-H.Research trends on micro and nano-scale materials degradation in nuclear power plant[J]. Acta Metall. Sin., 2011, 47: 769
[13] (韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究-进展与趋势[J]. 金属学报, 2011, 47: 769)
[14] Lu Z, Shoji T, Takeda Y, et al.Effects of loading mode and temperature on stress corrosion crack growth rates of a cold-worked type 316L stainless steel in oxygenated pure water[J]. Corrosion, 2007, 63: 1021
[15] Arioka K, Yamada T, Terachi T, et al.Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion, 2007, 63: 1114
[16] Zhang L T, Wang J Q.Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment[J]. J. Nucl. Mater., 2014, 446: 15
[17] Andresen P L.Effects of temperature on crack growth rate in sensitized type 304 stainless steel and alloy 600[J]. Corrosion, 1993, 49: 714
[18] Vermilyea D A.A theory for the propagation of stress corrosion cracks in metals[J]. J. Electrochem. Soc., 1972, 119: 405
[19] Turnbull A.Modelling of environment assisted cracking[J]. Corros. Sci., 1993, 34: 921
[20] Ford F P.Quantitative prediction of environmentally assisted cracking[J]. Corrosion, 1996, 52: 375
[21] Kitaguchi H S, Li H Y, Evans H E, et al.Oxidation ahead of a crack tip in an advanced Ni-based superalloy[J]. Acta Mater., 2013, 61: 1968
[22] Lu Y H, Peng Q J, Sato T, et al.An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in hightemperature oxygenated water[J]. J. Nucl. Mater., 2005, 347: 52
[23] Betova I, Bojinov M, Kinnunen P, et al.Influence of Zn on the oxide layer on AISI 316L (NG) stainless steel in simulated pressurised water reactor coolant[J]. Electrochim. Acta, 2009, 54: 1056
[24] Chu W Y, Qiao L J, Li J X, et al.Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 446
[24] (褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 446)
[1] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] 谢冬柏,周游宇,鲁金涛,王文,朱圣龙,王福会. Al/Si对镍基合金在超临界水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[9] 张克乾,胡石林,唐占梅,张平柱. 冷加工核电结构材料在高温高压水中应力腐蚀裂纹扩展行为的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[10] 谢冬柏, 周游宇, 鲁金涛, 王文, 朱圣龙, 王福会. Cr对镍基合金在超临界水中氧化行为的影响研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[11] 朱若林, 张利涛, 王俭秋, 张志明, 韩恩厚. 核级316LN不锈钢弯管在高温高压水中的应力腐蚀裂纹扩展行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[12] 周霄骋, 崔巧棋, 贾静焕, 刘智勇, 杜翠薇. Cl-浓度对316L不锈钢在碱性NaCl/Na2S溶液中SCC行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[13] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[14] 罗金恒,胥聪敏,杨东平. SRB作用下X100管线钢在酸性土壤环境中的应力腐蚀开裂行为[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[15] 邓平,孙晨,彭群家,韩恩厚,柯伟. 堆芯结构材料辐照促进应力腐蚀开裂研究现状[J]. 中国腐蚀与防护学报, 2015, 35(6): 479-487.