Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (4): 375-380    DOI: 10.11902/1005.4537.2015.162
  研究报告 本期目录 | 过刊浏览 |
短期贮存对金属铜腐蚀电化学行为的影响
冯林,王燕华(),钟莲,王佳,李爱娇,金晓晓
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Influence of Short-term Storage on Corrosion Behavior of Copper
Lin FENG,Yanhua WANG(),Lian ZHONG,Jia WANG,Aijiao LI,Xiaoxiao JIN
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(1802 KB)   HTML
摘要: 

采用动电位极化 (PDS)、电化学阻抗谱 (EIS)、电容测量以及阵列电极等技术研究了Cu的短期贮存对其腐蚀电化学行为的影响。结果表明,金属Cu表面膜呈现p型半导体结构,经过短期贮存后载流子浓度减小,腐蚀电位正移,腐蚀电流密度下降,表面膜对腐蚀阴极过程、阳极过程均有抑制作用。Cu在NaCl液滴下呈现典型的局部腐蚀特征;经过贮存后,电极表面润湿性减弱,腐蚀活性降低,总体平均腐蚀强度减弱,但是局部腐蚀强度反而增强。

关键词 阵列电极短期贮存CuMott-Schottky曲线液滴腐蚀    
Abstract

The influence of short-term storage in dry atmosphere on the corrosion behavior of copper was investigated by means of potentiodynamic polarization, electrochemical impedance spectroscopy, capacitance measurement and array electrode technique. It was found that the surface film on copper presented a p-type semiconductor structure, and the carrier concentration decreased after short-term storage. At the same time, the corrosion potential increased, the corrosion current density decreased, and the surface film inhibited both the cathodic and anodic process. Copper displayed the typical characteristics of localized corrosion beneath a NaCl droplet. After storage, the wet-ability, the corrosion activity as well as the overall average corrosion intensity are reduced, but the local corrosion intensity enhanced.

Key wordsarray electrode    short-term storage    copper    mott-schottky plot    droplet    corrosion
    
基金资助:国家自然科学基金项目 (51131005和40906039) 及山东省优秀中青年科学家奖励基金项目 (BS2012HZ021) 资助

引用本文:

冯林,王燕华,钟莲,王佳,李爱娇,金晓晓. 短期贮存对金属铜腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(4): 375-380.
Lin FENG, Yanhua WANG, Lian ZHONG, Jia WANG, Aijiao LI, Xiaoxiao JIN. Influence of Short-term Storage on Corrosion Behavior of Copper. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 375-380.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.162      或      https://www.jcscp.org/CN/Y2016/V36/I4/375

图1  试样贮存前后在0.05 mol/L Na2SO4溶液中的电容-电压曲线
Sample a b N / cm-3 Efb / V
Fresh 2.09×1014 -9.41×1015 3.21×1019 -3.45×10-3
Passivated 2.71×1014 -1.52×1016 1.98×1019 -7.92×10-3
表1  试样贮存前后在0.05 mol/L Na2SO4溶液中的电化学参数
图2  试样贮存前后在0.6 mol/L NaCl溶液中的PDS和EIS谱
图3  新处理电极和贮存30 d后电极在25 μL 0.6 mol/L NaCl液滴下电极表面电流分布图
图4  新处理电极和贮存后电极的平均电流iAverage,平均阳极电流密度IAverage,最大阳极电流密度Ia,max和局部腐蚀强度指数LCII随腐蚀时间的变化
[1] Wu J, Zhou X L, Dong C F, et al.Research progress on atmospheric corrosion of copper and its alloys[J]. Corros. Sci. Prot. Technol., 2010, 22(5): 464
[1] (吴军, 周贤良, 董超芳等. 铜及铜合金大气腐蚀研究进展[J]. 腐蚀科学与防护技术, 2010, 22(5): 464
[2] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors-Part 2. Pure copper[J]. Corros. Sci., 2007, 49(5): 2329
[3] Kear G, Barker B D, Walsh F C.Electrochemical corrosion of unalloyed copper in chloride media—A critical review[J]. Corros. Sci., 2004, 46(1): 109
[4] Duran B, Turhan M C, Bereket G, et al.Electropolymerization, characterization and corrosion performance of poly (N-ethylaniline) on copper[J]. Electrochim. Acta, 2009, 55(1): 104
[5] Mendoza A R, Corvo F, Gómez A, et al.Influence of the corrosion products of copper on its atmospheric corrosion kinetics in tropical climate[J]. Corros. Sci., 2004, 46(5): 1189
[6] Fonseca I T E, Picciochi R, Mendon?a M H, et al. The atmospheric corrosion of copper at two sites in Portugal: A comparative study[J]. Corros. Sci., 2004, 46(3): 547
[7] Zou S, Li X, Dong C, et al.Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment[J]. Electrochim. Acta, 2013, 114: 363
[8] Huang H, Guo X, Zhang G, et al.Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer[J]. Corros. Sci., 2011, 53(10): 3446
[9] Hernández R D P B, Aoki I V, Tribollet B, et al. Electrochemical impedance spectroscopy investigation of the electrochemical behaviour of copper coated with artificial patina layers and submitted to wet and dry cycles[J]. Electrochim. Acta, 2011, 56(7): 2801
[10] Watanabe M, Higashi Y, Tanaka T.Differences between corrosion products formed on copper exposed in Tokyo in summer and winter[J]. Corros. Sci., 2003, 45(7): 1439
[11] Lin C, Li X G, Wang G Y.Research progress on initial stage of atmospheric corrosion behavior of metals in pollutant atmospherics[J]. Corros. Sci. Prot. Technol., 2004, 16(2): 89
[11] (林翠, 李晓刚, 王光雍. 金属材料在污染大气环境中初期腐蚀行为和机理研究进展[J]. 腐蚀科学与防护技术, 2004, 16(2): 89)
[12] Chen Z Y, Persson D, Samie F, et al.Effect of carbon dioxide on sodium chloride-induced atmospheric corrosion of copper[J]. J. Electrochem. Soc., 2005, 152(12): B502
[13] Cole I S, Ganther W D.Experimental determination of time taken for openly exposed metal surfaces to dry[J]. Corros. Eng. Sci. Technol., 2006, 41(2): 161
[14] Sato N.Toward a more fundamental understanding of corrosion processes[J]. Corrosion, 1989, 45(5): 354
[15] Szklarska-Smialowska Z.Mechanism of pit nucleation by electrical breakdown of the passive film[J]. Corros. Sci., 2002, 44(5): 1143
[16] Stimming U.Photoelectrochemical studies of passive films[J]. Electrochim. Acta, 1986, 31(4): 415
[17] Knauth P, Massiani Y.Mott-Schottky analysis of polycrystalline copper (I) bromide in aqueous electrolytes[J]. J. Electroanal. Chem., 1998, 42(1/2): 229
[18] Fattah-Alhosseini A, Soltani F, Shirsalimi F, et al.The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM)[J]. Corros. Sci., 2011, 53(10): 3186
[19] Young K F, Frederikse H P R. Compilation of the static dielectric constant of inorganic solids[J]. Phys. Chem. Ref. Data, 1973, 2(2): 2313
[20] Ye W, Li Y, Wang F.Effects of nanocrystallization on the corrosion behavior of 309 stainless steel[J]. Electrochim. Acta, 2006, 51(21): 4426
[21] Macdonald D D.The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139(12): 3434
[22] Li C T, Cheng X Q, Dong C F, et al.Influence of Cl- on the corrosion electrochemical behavior of Alloy 690[J]. J. Univ. Sci. Technol. Beijing, 2011, 33(4): 444
[22] (李成涛, 程学群, 董超芳等. Cl-对690合金腐蚀电化学行为的影响[J]. 北京科技大学学报, 2011, 33(4): 444
[23] Kang J, Yang Y, Jiang X, et al.Semiconducting properties of passive films formed on electroplated Ni and Ni-Co alloys[J]. Corros. Sci., 2008, 50(12): 3576
[24] Alves V A, Brett C M A. Influence of alloying on the passive behaviour of steels in bicarbonate medium[J]. Corros. Sci., 2002, 44(9): 1949
[25] Ningshen S, Kamachi M U, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49(2): 481
[26] Muster T H, Bradbury A, Trinchi A, et al.The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and droplet shape[J]. Electrochim. Acta, 2011, 56(4): 1866
[27] Xu R, Wang Y H, Wang J, et al.Influence of spreadability of seawater droplet on electrochemical characteristics of carbon steel[J].Chin. J. Mater. Res., 2015, 29(2): 95
[27] (续冉, 王燕华, 王佳等. 海水液滴铺展因子对碳钢表面电化学特性的影响[J]. 材料研究学报, 2015, 29(2): 95
[28] Tan Y, Aung N N, Liu T.Evaluating localised corrosion intensity using the wire beam electrode[J]. Corros. Sci., 2012, 63: 379
[29] Yang M, Wang Z Y.Review of atmospheric corrosion of copper[J]. Equip. Environ. Eng., 2006, 3(4): 38
[29] (杨敏, 王振尧. 铜的大气腐蚀研究[J]. 装备环境工程, 2006, 3(4): 38
[30] Gao Q, Mao L, Wu L C, et al.Atmospheric corrosion of copper[J]. J. Hebei Univ. Sci. Technol., 2003, 24(4):29
[30] (高青, 毛磊, 吴立成等. 铜在大气中的腐蚀[J]. 河北科技大学学报, 2003, 24(4): 29)
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.