Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (6): 513-519    
  研究报告 本期目录 | 过刊浏览 |
异恶唑衍生物缓蚀剂缓蚀性能的理论评价
吴刚1,耿玉凤2,贾晓林3,孙霜青3,胡松青3
1. 中国石油天然气集团公司华北油田分公司采油工艺研究院 任丘 062500
2. 中石化管道储运公司供应处 徐州 221008
3. 中国石油大学理学院 青岛 266580
THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES
WU Gang1, GENG Yufeng2, JIA Xiaolin3, SUN Shuangqing3, HU Songqing3
1. Production Technology Research Institute, HuaBei Oil Field Branch Company, China National Petroleum Corporation, Renqiu 062500
2. Supply Department, Sinopec Pipeline Storage and Transportation Corporation, Xuzhou 221008
3. College of Science, China University of Petroleum, Qingdao 266580
全文: PDF(1304 KB)  
摘要: 

采用量子化学计算和分子动力学模拟相结合的方法,对盐酸溶液中2-甲基-5-己基异恶唑、2-甲基-5-十二烷基异恶唑、2-异丙基-5-十二烷基异恶唑和2-叔丁基-5-十二烷基异恶唑4种异恶唑衍生物缓蚀剂抑制低碳钢腐蚀的缓蚀性能进行理论评价,并对其缓蚀机理进行分析。量子化学计算表明,4种缓蚀剂分子的前线轨道主要离域在分子头部的异恶唑环和侧链上,亲电反应活性中心为分子中的N、O原子。分子动力学模拟结果表明,液相条件下,异恶唑衍生物缓蚀剂的极性头部优先吸附于金属表面,而烷基长链在溶剂水的作用下背离金属表面,分子在表面的吸附强度随着头基侧链中甲基个数的增加而增强。理论评价结论与实验结果完全一致。

关键词 异恶唑缓蚀剂量子化学计算分子动力学模拟    
Abstract

The corrosion resisting property of four corrosion inhibitors in HCl on mild steel, including 2-methyl-5-hexylisoxazolidine (A), 2-methyl-5-dodecylisoxazolidine (B), 2-isopropyl-5-dodecylisoxazolidine (C) and 2-tert-butyl-5-dodecylisoxazolidine (D), was theoretically evaluated using quantum chemistry calculations and molecular dynamics simulations. The corrosion inhibition mechanism was analyzed. The quantum chemical calculations indicated that the frontier orbitals of four molecules were located in the isoxazole ring and side chain of the molecules. The electrophilic attack centers of the inhibitors were on the N and O atoms. Molecular dynamics calculation shows that under liquid conditions the polarity head group of isoxazolidine corrosion inhibitors priority adsorbed in the metal surface, while the alkyl chain stayed in the water phase with distortion. The strength of molecules adsorbed on the surface enhanced with increasing the number of methyl in the molecular heads. The theoretical evaluation was shown to be in complete accord with experiment results.

Key wordsIsoxazolidines    corrosion inhibitor    quantum chemistry calculation    molecular dynamics simulation
收稿日期: 2012-06-02     
ZTFLH:  TG174  
基金资助:

中国石油中青年创新基金(2011D-5006-0202)和山东省自然科学基金(ZR2012BM010)资助

通讯作者: 胡松青     E-mail: ccupc@163.com
Corresponding author: HU Songqing     E-mail: ccupc@163.com
作者简介: 吴刚,男,1965年生,高级工程师,研究方向为油田腐蚀与防护

引用本文:

吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
WU Gang, GENG Yufeng, JIA Xiaolin, SUN Shuangqing, HU Songqing. THEORETICAL EVALUATION OF CORROSION INHIBITION PERFORMANCE OF ISOXAZOLIDINES DERIVATIVES. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 513-519.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I6/513

 


[1] Lin H C. Progress in research of inhibitors[J]. Corros. Sci. Prot. Technol., 1997, 9(4): 308-313

(林海潮. 缓蚀剂研究的进展[J]. 腐蚀科学与防护技术, 1997, 9(4): 308-313)

[2] Zhang T S, Zhang H, Gao H. Corrosion Inhibitor[M]. Beijing: Chemical Industry Press, 2008: 3-9

(张天胜, 张浩, 高红. 缓蚀剂[M]. 北京: 化学工业出版社, 2008: 3-9)

[3] Vosta J, Eliasek J. A quantum chemical study of the corrosion inhibition of iron by means of aniline derivatives in hydrochloric acid[J]. Corrosion, 1976, 32(5): 183-185

[4] Rodriguez Valdez L M, Martinez Villafane A, Glossman-Mitnik D. Computational simulation of the molecular structure and properties of heterocyclic organic compounds with possible corrosion inhibition properties[J]. J. Mol. Struct., 2005, 713(1-3): 65-70

[5] Sein L T, Wei Y, Jansen S A. Corrosion inhibition by aniline oligomers through charge transfer: a DFT approach[J]. Synth. Met., 2004, 143(1): 1-12

[6] Bereket G, Ogretir C, Yurt A. Quantum mechanical calculations on some 4-methyl-5-substituted imidazole derivatives as acidic corrosion inhibitor for zinc[J]. J. Mol. Struct., 2001, 571(1-3): 139-145

[7] Lashkari M, Arshadi M R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects[J]. Chem. Phys., 2004, 299(1): 131-137

[8] Guo X D, Huang S P, Teng J W, et al. Study on the adsorption of water on nanZSM-5 type zeolite: molecular simulation[J]. Acta. Phys-Chim. Sin., 2006, 22(3): 270-174

(郭向丹, 黄世萍, 滕加伟等. 水在NanZSM-5型分子筛中吸附的研究: 分子模拟[J]. 物理化学学报, 2006, 22(3): 270-174)

[9] Ungerer P, Nieto-Draghi C, Rousseau B, et al. Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions[J]. J. Mol. Liq., 2007, 134(1-3): 71-89

[10] Srivastava P, Chapman W G, Laibinis P E. Molecular dynamics simulation of oxygen transport through ω-alkoxy-n-alkanethiolate self-assembled monolayers on gold and copper[J]. Langmuir, 2009, 25(5): 2689-2695

[11] Hou T J, Zhu L L, Xu X J, et al. Diffusion of benzene in MCM-22 zeolite: A molecular dynamics study[J]. Acta Phys-Chim. Sin., 2000, 16(8): 701-707

(侯廷军, 朱丽荔, 徐筱杰等. MCM-22型分子筛中苯分子吸附行为的分子动力学模拟[J]. 物理化学学报, 2000, 16(8): 701-707)

[12] Han Z W, Liao C, Zhou W. Molecular dynamics simulation of adsorption of PLL (poly-lysine) on crystal lattice interfaces[J]. Comp. Appl. Chem., 2007, 24(5): 703-708

(韩振为, 廖川, 周薇. 分子动力学模拟聚赖氨酸在晶格界面上的吸附[J]. 计算机与应用化学, 2007, 24(5): 703-708)

[13] Zhang J, Li Z P, Zhao W M, et al. Theoretical study on corrosion inhibition performance of imidazoline inhibitors[J]. Acta Petro. Sin., 2008, 24(5): 58-604

(张军, 李中谱, 赵卫民等. 咪唑啉缓蚀剂缓蚀性能的理论研究[J]. 石油学报(石油加工), 2008, 24(5): 58-604)

[14] Wang Y F, You Q, Zhao F L. Inhibition properties of a novel imidazoline complex for A3 steel in salt water saturated by CO2[J]. Acta Petro. Sin., 2006, 22(3): 74-78

(王业飞, 由庆, 赵福麟. 一种新型咪唑啉复配缓蚀剂对A3钢在饱和CO2盐水溶液中的缓蚀性能[J]. 石油学报(石油加工), 2006, 22(3): 74-78)

[15] Cruzj J, Martinez-Aguilera L M R, Salcedo R, et al. Reactivity properties of derivatives of 2-imidazoline: an ab initio DFT study[J]. Int. J. Quantum Chem., 2001, 85(4-5): 546-556

[16] Ali S A, Saeed M T, Rahman S U. The isoxazolidines: a new class of corrosion inhibitors of mild steel in acidic medium[J]. Corros Sci, 2003, 45(2): 253-266

[17] Ali S A, El-Shareef A M, Al-Ghamdi R F, et al. The isoxazolidines: the effects of steric factor and hydrophobic chain length on the corrosion inhibition of mild steel in acidic medium[J]. Corros. Sci., 2005, 47(11): 2659-2678

[18] Duak M, Kaminski J W, Weso owski T A. Equilibrium geometries of noncovalently bound intermolecular complexes derived from subsystem formulation of density functional theory[J]. J. Chem. Theory Comp., 2007, 3(3): 735-745

 

[19] Franzen S. Carbonmonoxy rebinding kinetics in H93G myoglobin: separation of proximal and distal side effects[J]. J. Phys. Chem., 2002, 106(17) B: 4533-4542

[20] Zhang J, Zhao W M, Guo W Y, et al. Theoretical evaluation of corrosion inhibition performance of benzimidazole corrosion inhibitors[J]. Acta Phys-Chim Sin, 2008, 24(7): 1239-1244

(张军, 赵卫民, 郭文跃等. 苯并咪唑类缓蚀剂缓蚀性能的理论评价[J]. 物理化学学报, 2008, 24(7): 1239-1244)

[21] Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J. Chem. Phys., 1990, 92(1): 508-517

[22] Delley B. Fast calculation of electrostatics in crystals and large molecules[J]. J. Phys. Chem., 1996, 100(15): 6107-6110

[23] Delley B. From molecules to solids with the Dmol3 approach[J]. J. Chem. Phys., 2000, 113(18): 7756-7764

[24] Ramachandran S, Tsai B L, Blanco M, et al. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines[J]. Langmuir, 1996, 12(26): 6419-6428

[25] Sun H. COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. J. Phys. Chem., 1998, 102(38) B: 7338-7364

[26] Heermann D W, Translated by Qin K C. Computer Simulation Methods in the Theoretical Physics[M]. Beijing: Peking University Press, 1996: 45-47

(Heermann D W. 秦克成译. 理论物理学中的计算机模拟方法[M]. 北京: 北京大学出版社, 1996: 45-47)

[27] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J. Chem. Phys., 1980, 72(4): 2384-2393

[28] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford: Clarendon Press, 1987: 85-97

[29] Maitland G C, Rigby M, Smith E B, et al. Intermolecular Forces: Their Origin and Determination[M]. London: Oxford University Press, 1987. 327-330

[30] Hu S Q, Jia X L, Hu J C, et al. Quantum chemical analysis on molecular structures and inhibitive properties of imidazoline inhibitors[J]. J. China Univ. Petro., 2011, 35(1): 146-150

(胡松青, 贾晓林, 胡建春等. 咪唑啉缓蚀剂分子结构与缓蚀性能的量子化学分析[J]. 中国石油大学学报, 2011, 35(1): 146-150)

[31] Khalil N. Quantum chemical approach of corrosion inhibition[J]. Electrochim.Acta, 2003, 48(18): 2635-2640

[32] Xia M Z, Zhao W, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors[J]. Corros. Sci. Prot. Technol., 2002, 14(6): 311-314

(夏明珠, 赵维, 雷武等. 含P有机缓蚀剂缓蚀性能的量子化学研究[J]. 腐蚀科学与防护技术, 2002, 14(6): 311-314)

[33] Zhao W, Xia M Z, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors[J]. J. Chin. Soc. Corros. Prot., 2002, 22(4): 217-220

(赵维, 夏明珠, 雷武等. 有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究[J]. 中国腐蚀与防护学报, 2002, 22(4): 217-220)

[34] Taner A, Kandemirli F, Ebenso E E, et al. Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium[J]. Corros. Sci., 2009, 51(1): 35-47

[35] Zhang S G, Yang P. The molecular structure and corrosion inhibitor efficiency of some cyclic nitrogen compounds:an DFT study[J]. J. Chin. Soc. Corros. Prot., 2004, 24(4): 240-244

(张士国, 杨频. 用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系[J]. 中国腐蚀与防护学报, 2004, 24(4): 240-244)

[36] Gomez B, Likhanova N V, Dominguez-Aguilar M A, et al. Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles[J]. J. Phys. Chem., 2006, 110(18) B: 8928-8934

[37] Hu S Q, Hu J C, Gao Y J, et al. Corrosion inhibition and adsorption of lauryl-imidazolines for Q235 steel[J]. CIESC J., 2011, 62(1): 147-155

(胡松青, 胡建春, 高元军等. 月桂基咪唑啉对Q235钢的缓蚀吸附作用[J]. 化工学报, 2011, 62(1): 147-155)
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 刘峥, 李海莹, 王浩, 赵永, 谢思维, 张淑芬. 分子动力学模拟水溶液中席夫碱基表面活性剂在Zn表面的吸附行为[J]. 中国腐蚀与防护学报, 2018, 38(4): 381-390.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.