Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 126-136     CSTR: 32134.14.1005.4537.2025.218      DOI: 10.11902/1005.4537.2025.218
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响
丁昊1, 杜凌霄1, 舒琴2, 曹甫洋3, 谢云1(), 彭晓1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.中国航发贵州黎阳航空动力有限公司 贵阳 550014
3.江苏大学材料科学与工程学院 镇江 212013
Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating
DING Hao1, DU Lingxiao1, SHU Qin2, CAO Fuyang3, XIE Yun1(), PENG Xiao1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.Liyang Aero Power Co., Ltd., Aero Engine Corporation of China, Guiyang 550014, China
3.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
引用本文:

丁昊, 杜凌霄, 舒琴, 曹甫洋, 谢云, 彭晓. WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
Hao DING, Lingxiao DU, Qin SHU, Fuyang CAO, Yun XIE, Xiao PENG. Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 126-136.

全文: PDF(19178 KB)   HTML
摘要: 

为研究不同WC含量对AlCoCrFeNi2.1共晶高熵合金复合涂层磨损和腐蚀性能的影响,本研究采用双路送粉激光熔覆技术,在45#钢表面制备了含WC质量分数分别为0%、10%、30%和50%的AlCoCrFeNi2.1-WC x 复合涂层。系统分析了WC含量对涂层的微观组织、显微硬度、耐磨性及耐蚀性的影响规律。研究表明,WC的引入促使涂层在原有的FCC和BCC相的基础上,生成了WC、W2C及η相等金属碳化物,且随着WC含量的增加,涂层中碳化物增强相显著增多,涂层硬度逐步提升。其中,AlCoCrFeNi2.1-WC50复合涂层的显微硬度最高,达到775.8HV0.2,约为45#钢基体的3.8倍。WC的加入亦显著提高了涂层的耐磨性,磨损速率由不含WC时的1.3 × 10-3 mm3·N-1·m-1降至WC50涂层的8.6 × 10-6 mm3·N-1·m-1。但随着WC含量的增加,涂层中不同相之间的电位差加剧,导致电偶腐蚀增强,从而使复合涂层的耐蚀性呈下降趋势。综合硬度、耐磨性与耐蚀性方面性能,WC添加量为30%时综合性能最优,具有耐磨性能和腐蚀性能最好的匹配,拥有良好的工程应用前景。

关键词 高熵合金涂层激光熔覆WC颗粒耐磨性耐蚀性    
Abstract

To investigate the effect of WC contents on the wear and corrosion performance of laser claddings of high-entropy eutectic alloy AlCoCrFeNi2.1, i.e. AlCoCrFeNi2.1-WC x with WC contents of 0%, 10%, 30%, and 50% respectively were fabricated on the surface of 45# steel by laser cladding technologywith a dual powder feeding system. The influence of WC content on the microstructure, microhardness, wear resistance, and corrosion resistance of the coatings was systematically studied. The results show that the addition of WC promoted the formation of metal carbides such as WC, W2C and η phases in the coatings, in addition to the original existed FCC and BCC phases. With the increasing WC content, the volume fractions of hard carbide phases increased, leading to a significant enhancement in microhardness of the composite coatings. The AlCoCrFeNi2.1-WC50 coating exhibited the highest microhardness of 775.8 HV0.2, approximately 3.8 times that of 45# steel matrix. Moreover, the wear resistance was markedly enhanced with the increasingWC content, and correspondingly the wear rate decreased from 1.3 × 10-3 mm3·N-1·m-1 for the WC-free AlCoCrFeNi2.1 coating to 8.6 × 10-6 mm3·N-1·m-1 for the AlCoCrFeNi2.1-WC50 coating. However, a higher WC content led to increase the emerging of galvanic corrosion between different phases in the coating, thereby deteriorating the corrosion resistance. Comprehansively considering the microhardness, wear resistance and corrosion resistance, the AlCoCrFeNi2.1-WC30 coating exhibited the best comprehensive properties, featured with a good combination of wear resistance and corrosion resistance, and can be viewed as a promising material for engineering application.

Key wordshigh-entropy alloy coatings    laser cladding    WC particle    wear resistance    corrosion resistance
收稿日期: 2025-07-09      32134.14.1005.4537.2025.218
ZTFLH:  TG174  
基金资助:江西省重点研发计划(20232BBE50007);江西省自然科学基金(20224BAB214018)
通讯作者: 谢 云,E-mail:yun.xie@nchu.edu.cn,研究方向为金属材料高温腐蚀与防护、高熵合金涂层、金属增材制造等
作者简介: 丁昊,2001 年生,硕士研究生。主要研究方向为高熵合金的增材制造。
谢云,1988 年生,2018 年毕业于澳大利亚新南威尔士大学,获博士学位。现就职于南昌航空大学,副教授,硕士研究生导师,入选江西省“双千计划”青年人才,中国腐蚀与防护学会高温专业委员会委员,江西省材料学会理事,担任《中国腐蚀与防护学报》、《材料热处理学报》等学术期刊的青年编委。目前主要从事金属材料高温腐蚀与防护、高熵合金涂层、金属增材制造等方面的研究,先后主持国家自然科学基金、江西省重点研发计划、江西省自然科学基金等多项国家和省部级科研项目,迄今以第一/通讯作者在Corrosion Science、Surface and Coatings Technology等期刊发表SCI/EI论文共30余篇。
图1  AlCoCrFeNi2.1合金粉末和WC陶瓷粉末SEM形貌及粒度分布统计
图2  双路送粉实验的示意图
CoatingFeeding rate of WC powder / g·min-1Feeding rate of HEA powder / g·min-1
HEA02.3
WC1012.3
WC303.82.3
WC506.42.3
表1  制备AlCoCrFeNi2.1-WC x 涂层的送粉速度
图3  AlCoCrFeNi2.1-WC x 复合涂层的XRD图谱
图4  AlCoCrFeNi2.1-WC x 复合涂层的截面SEM形貌
PhaseCoatingAlCoFeCrNiW
BCCHEA (A1)23.512.919.112.432.1-
WC10 (B1)23.711.720.010.132.81.6
WC30 (C1)24.410.722.28.632.81.3
WC50 (D1)27.311.417.66.835.11.6
FCCHEA (A2)15.516.125.613.529.3-
WC10 (B2)14.114.628.811.529.01.9
WC30 (C2)13.915.025.411.129.84.7
WC50 (D2)14.215.122.812.932.52.3
ηWC10 (B3)5.69.327.836.213.57.7
WC30 (C3)6.211.624.123.015.419.7
WC50 (D3)7.910.928.715.817.419.3
表2  BCC相、FCC相、η相和过渡层的成分 (atomic fraction / %)
图5  AlCoCrFeNi2.1-WC x 复合涂层的截面硬度
图6  45#钢和AlCoCrFeNi2.1-WC x 复合涂层的摩擦系数曲线、平均摩擦系数、磨痕轮廓曲线和磨损速率
图7  AlCoCrFeNi2.1-WC x 复合涂层的磨痕SEM形貌图
RegionAlCoFeCrNiWO
A10.68.239.58.118.0-15.5
B1.31.043.01.81.70.650.5
C0.40.336.01.30.80.360.9
D--36.51.28.80.262.1
表3  图7中标记区域的EDS结果 (atomic fraction / %)
SampleEcorr / mVIcorr / A·cm-2
45#-5768.4 × 10-6
304 steel-2331.8 × 10-7
HEA-2051.1 × 10-7
WC10-2682.8 × 10-7
WC30-2854.1 × 10-7
WC50-3532.0 × 10-6
表4  45#钢和AlCoCrFeNi2.1-WC x 复合涂层在3.5%NaCl溶液中的电化学腐蚀参数
图8  45#钢和AlCoCrFeNi2.1-WC x 复合涂层在3.5% NaCl溶液中的动电位极化曲线
图9  在3.5%NaCl溶液中动电位极化测试后AlCoCrFeNi2.1-WC x 复合涂层的表面形貌
[1] Zhou Z Y, Zhang X, Peng X, et al. Insights into the effects of grain size variation and FCC phase formation on the oxidation behavior of laser additively manufactured BCC AlCoCrFeNi high entropy alloy [J]. Corros. Sci., 2024, 239: 112416
doi: 10.1016/j.corsci.2024.112416
[2] Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
[2] 郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
[3] Li T X, Wang S D, Lu Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study CAE, 2023, 25(3): 170
[3] 李天昕, 王书道, 卢一平 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170
doi: 10.15302/J-SSCAE-2023.03.016
[4] Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
[4] 裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
[5] Cui H Z, Jiang D. Research progress of high-entropy alloy coatings [J]. Acta Metall. Sin., 2022, 58: 17
doi: 10.11900/0412.1961.2021.00193
[5] 崔洪芝, 姜 迪. 高熵合金涂层研究进展 [J]. 金属学报, 2022, 58: 17
doi: 10.11900/0412.1961.2021.00193
[6] Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
[6] 吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725
doi: 10.11902/1005.4537.2023.160
[7] Wu Q F, Jia Y H, Wang Z J, et al. Rapid alloy design from superior eutectic high-entropy alloys [J]. Scr. Mater., 2022, 219: 114875
doi: 10.1016/j.scriptamat.2022.114875
[8] Li K Y, Zhai Y L, Hu X Y, et al. Research progress on high temperature corrosion of eutectic high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1377
[8] 李开洋, 翟蕴龙, 胡新宇 等. 共晶高熵合金高温腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1377
doi: 10.11902/1005.4537.2024.005
[9] Huang Q Y, Li Y Z, Yang Y F, et al. Hot corrosion behavior of Pt modified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 115
[9] 黄勤英, 李彧卓, 阳颖飞 等. Pt改性共晶高熵合金AlCoCrFeNi2.1热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 115
doi: 10.11902/1005.4537.2024.134
[10] Qiu H F, Yuan X J, Luo W P, et al. Research progress in additive manufacturing of AlCoCrFeNi2.1 eutectic high-entropy alloys [J]. J. Mater. Eng., 2024, 52(1): 70
[10] 邱贺方, 袁晓静, 罗伟蓬 等. 增材制造AlCoCrFeNi2.1共晶高熵合金研究进展 [J]. 材料工程, 2024, 52(1): 70
doi: 10.11868/j.issn.1001-4381.2023.000568
[11] Du L X, Ding H, Xie Y, et al. Effect of laser energy density on microstructures and properties of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta. Metall. Sin. (Engl. Lett.), 2025, 38: 233
doi: 10.1007/s40195-024-01783-0
[12] Wang J, Li Y, Lu B W, et al. Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy coatings fabricated by extreme high-speed and conventional laser cladding [J]. J. Therm. Spray. Technol., 2024, 33: 992
doi: 10.1007/s11666-024-01734-2
[13] Wang D, Deng S J, Chen H, et al. Effect of Y2O3 addition on the microstructure and properties of NiCoCrAlYTa coatings prepared by electrospark deposition: From a perspective of thermal physical properties [J]. Surf. Coat. Technol., 2022, 451: 129040
doi: 10.1016/j.surfcoat.2022.129040
[14] Jiang H, Li L, Wang J M, et al. Wear properties of spark plasma-sintered AlCoCrFeNi2.1 eutectic high entropy alloy with NbC additions [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 987
doi: 10.1007/s40195-023-01529-4
[15] Vyas A, Menghani J, Natu H. Influence of WC particle on the metallurgical, mechanical, and corrosion behavior of AlFeCuCrCoNi-WC x high-entropy alloy coatings [J]. J. Mater. Eng. Perform., 2021, 30: 2449
doi: 10.1007/s11665-021-05523-8
[16] Zhang A H, Jiang L, Deng H H, et al. Optimized wear behavior and oxidative strengthening mechanism of a WC reinforced high entropy composite coatings [J]. J. Mater. Res. Technol., 2025, 36: 6473
doi: 10.1016/j.jmrt.2025.04.194
[17] Liu Z Y, Li Y C, Wang Y. Microstructure and wear resistance of spherical ceramic particles reinforced FeCoNiCrMn composite coating fabricated by laser directional energy deposition [J]. J. Mater. Res. Technol., 2025, 37: 1223
doi: 10.1016/j.jmrt.2025.06.097
[18] Li Z S, Xie D Q, Liu Y, et al. Effect of WC on the microstructure and mechanical properties of laser-clad AlCoCrFeNi2.1 eutectic high-entropy alloy composite coatings [J]. J. Alloy. Compd., 2024, 976: 173219
doi: 10.1016/j.jallcom.2023.173219
[19] Li Y, Yu Y Y, Wang J, et al. Effect of WC content on the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy coating prepared by ultra-high speed laser cladding technology [J]. Mater. Today Commun., 2024, 41: 110259
[20] Liu H, Zhang Y, Wang W Q, et al. Investigating particle-size dependent on microstructure evolution and wear mechanisms of WC-reinforced AlCoCrFeNi2.1 high-entropy alloy composite coatings in laser cladding [J]. Eng. Fail. Anal., 2025, 179: 109759
doi: 10.1016/j.engfailanal.2025.109759
[21] Yuan J H, Zhan Q, Huang J, et al. Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization [J]. Mater. Chem. Phys., 2013, 142: 165
doi: 10.1016/j.matchemphys.2013.06.052
[22] Yang J X, Miao X H, Wang X B, et al. Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60%WC composite coating produced by laser cladding [J]. Int. J. Refract. Met. Hard Mater., 2014, 46: 58
doi: 10.1016/j.ijrmhm.2014.05.010
[23] An X L, Liu Q B. Effect of WC particles on microstructure and properties of high entropy alloy SiFeCoCrTi coating synthesized by laser cladding [J]. Rare Met. Mater. Eng., 2016, 45: 2424
[23] 安旭龙, 刘其斌. WC颗粒对激光熔覆高熵合金SiFeCoCrTi涂层的组织及性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2424
[24] Verma A, Singh J B, Kaushik S D, et al. Lattice parameter variation and its effect on precipitation behaviour of ordered Ni2(Cr,Mo) phase in Ni-Cr-Mo alloys [J]. J. Alloy. Compd., 2020, 813: 152195
doi: 10.1016/j.jallcom.2019.152195
[25] Zhou R, Chen G, Liu B, et al. Microstructures and wear behaviour of (FeCoCrNi)1- x (WC) x high entropy alloy composites [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 56
doi: 10.1016/j.ijrmhm.2018.03.019
[26] Long H Y, Dong Z, Lu B W, et al. Influence of WC content on microstructure and properties of laser⁃cladded FeCoNiCr high⁃entropy alloy coatings [J]. Chin. J. Lasers, 2023, 50: 2402206
[26] 龙海洋, 董 真, 卢冰文 等. WC含量对激光熔覆FeCoNiCr高熵合金涂层组织结构及性能的影响规律研究 [J]. 中国激光, 2023, 50: 2402206
[27] Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature [J]. Acta Metall. Sin., 2023, 59: 267
[27] 苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理 [J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
[28] Duan H T, Du S M, Zhang Y Z, et al. Study on the friction heat rule under high-speed dry sliding conditions [J]. Lubr. Eng., 2007, 32(10): 40
[28] 段海涛, 杜三明, 张永振 等. 高速干滑动条件下钢/铜摩擦副摩擦磨损表面摩擦热规律研究 [J]. 润滑与密封, 2007, 32(10): 40
[29] Listyawan T A, Agustianingrum M P, Na Y S, et al. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 129: 115
doi: 10.1016/j.jmst.2022.04.028
[30] Xie Y, Su C, Huang Z X, et al. Improvement of oxidation resistance and alumina regrowth ability of Ni-30Cr-5Al alloy without and with Y: Nanocrystallization effect [J]. Corros. Sci., 2023, 223: 111472
doi: 10.1016/j.corsci.2023.111472
[31] Lu S S, Zhou J S, Wang L Q, et al. Corrosion resistance and elevated-temperature wear properties of laser cladding Ni-Co composite coating on ductile cast iron [J]. China Surf. Eng., 2022, 35(3): 122
[31] 路世盛, 周健松, 王凌倩 等. 球墨铸铁表面激光熔覆Ni-Co复合涂层的耐腐蚀及高温摩擦学性能 [J]. 中国表面工程, 2022, 35(3): 122
[32] Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates [J]. J. Mater. Sci. Technol., 2023, 136: 97
doi: 10.1016/j.jmst.2022.07.023
[1] 胡红钰, 王跃飞, 严海心, 史建军, 吴多利. 激光熔覆液压支架立柱防腐耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
[2] 刘海龙, 王力, 赵卫国, 韩嘉彧, 王轻松, 龙佳怡, 贺星, 高黎黎, 王华, 胡平. 钼合金表面Si-ZrB2-Ti-Cr多元涂层的激光熔覆制备及高温抗氧化性能[J]. 中国腐蚀与防护学报, 2026, 46(1): 155-164.
[3] 纪云瀚, 王勤英, 郑杰, 李怡璇, 西宇辰, 董立谨, 张杨飞, 白树林. 无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
[4] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[5] 黄泽邦, 刘光明, 范文学, 徐睿中, 朱炎彬, 刘晨辉. 钝化时间对304不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1741-1747.
[6] 何燕, 刘燕, 田华, 陈晔. 低温扩散预处理对含B超级奥氏体不锈钢S31254析出相及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[7] 郭耀威, 艾士民, 房大然, 林小娉, 杨连威, 郑哲皓. 高压凝固Mg-xAl (x = 3, 5, 7, 9, 12)合金组织结构及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2025, 45(5): 1265-1276.
[8] 冯宇芹, 郭同翰, 余韦汉, 吴伟, 张大全. Sb对高强结构钢在东海环境中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[9] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[10] 孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
[11] 郑子龙, 孙海静, 薛伟海, 陈国亮, 周欣, 王进军, 段德莉, 孙杰. 聚四氟乙烯对风电叶片聚氨酯涂层耐磨与耐雨蚀性能影响及损伤机制研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 881-893.
[12] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[13] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[14] 岳锐, 刘咏咏, 杨丽景, 朱兴隆, 陈权昕, 阿那尔, 张青科, 宋振纶. 激光重熔对生物可降解Zn-0.4Mn合金微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1127-1134.
[15] 李祥东, 刘昌昊, 张弛, 陈文娟, 崔宸悦, 朱勇文, 王姝舒. WC-Zn复合镀层的工艺设计及其性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.