|
|
|
| WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响 |
丁昊1, 杜凌霄1, 舒琴2, 曹甫洋3, 谢云1( ), 彭晓1 |
1.南昌航空大学材料科学与工程学院 南昌 330063 2.中国航发贵州黎阳航空动力有限公司 贵阳 550014 3.江苏大学材料科学与工程学院 镇江 212013 |
|
| Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating |
DING Hao1, DU Lingxiao1, SHU Qin2, CAO Fuyang3, XIE Yun1( ), PENG Xiao1 |
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2.Liyang Aero Power Co., Ltd., Aero Engine Corporation of China, Guiyang 550014, China 3.School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China |
引用本文:
丁昊, 杜凌霄, 舒琴, 曹甫洋, 谢云, 彭晓. WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
Hao DING,
Lingxiao DU,
Qin SHU,
Fuyang CAO,
Yun XIE,
Xiao PENG.
Effect of WC Content on Wear and Corrosion Performance of Laser Cladding AlCoCrFeNi2.1 Eutectic High-entropy Alloy Coating[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 126-136.
| [1] |
Zhou Z Y, Zhang X, Peng X, et al. Insights into the effects of grain size variation and FCC phase formation on the oxidation behavior of laser additively manufactured BCC AlCoCrFeNi high entropy alloy [J]. Corros. Sci., 2024, 239: 112416
doi: 10.1016/j.corsci.2024.112416
|
| [2] |
Guo J B, Yang S H, Zhou Z Y, et al. High-temperature oxidation behavior of laser additively manufactured AlCoCrFeNiSi high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 217
|
| [2] |
郭静波, 杨守华, 周子翼 等. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为 [J]. 中国腐蚀与防护学报, 2025, 45: 217
doi: 10.11902/1005.4537.2024.313
|
| [3] |
Li T X, Wang S D, Lu Y P, et al. Research progress and prospect of high-entropy alloy materials [J]. Strategic Study CAE, 2023, 25(3): 170
|
| [3] |
李天昕, 王书道, 卢一平 等. 高熵合金材料研究进展与展望 [J]. 中国工程科学, 2023, 25(3): 170
doi: 10.15302/J-SSCAE-2023.03.016
|
| [4] |
Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation-and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
|
| [4] |
裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
|
| [5] |
Cui H Z, Jiang D. Research progress of high-entropy alloy coatings [J]. Acta Metall. Sin., 2022, 58: 17
doi: 10.11900/0412.1961.2021.00193
|
| [5] |
崔洪芝, 姜 迪. 高熵合金涂层研究进展 [J]. 金属学报, 2022, 58: 17
doi: 10.11900/0412.1961.2021.00193
|
| [6] |
Wu D L, Wu H T, Sun H, et al. Research status and development of laser cladding high temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 725
|
| [6] |
吴多利, 吴昊天, 孙 珲 等. 激光熔覆高温防护涂层研究现状及发展方向 [J]. 中国腐蚀与防护学报, 2023, 43: 725
doi: 10.11902/1005.4537.2023.160
|
| [7] |
Wu Q F, Jia Y H, Wang Z J, et al. Rapid alloy design from superior eutectic high-entropy alloys [J]. Scr. Mater., 2022, 219: 114875
doi: 10.1016/j.scriptamat.2022.114875
|
| [8] |
Li K Y, Zhai Y L, Hu X Y, et al. Research progress on high temperature corrosion of eutectic high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1377
|
| [8] |
李开洋, 翟蕴龙, 胡新宇 等. 共晶高熵合金高温腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1377
doi: 10.11902/1005.4537.2024.005
|
| [9] |
Huang Q Y, Li Y Z, Yang Y F, et al. Hot corrosion behavior of Pt modified AlCoCrFeNi2.1 eutectic high entropy alloy [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 115
|
| [9] |
黄勤英, 李彧卓, 阳颖飞 等. Pt改性共晶高熵合金AlCoCrFeNi2.1热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 115
doi: 10.11902/1005.4537.2024.134
|
| [10] |
Qiu H F, Yuan X J, Luo W P, et al. Research progress in additive manufacturing of AlCoCrFeNi2.1 eutectic high-entropy alloys [J]. J. Mater. Eng., 2024, 52(1): 70
|
| [10] |
邱贺方, 袁晓静, 罗伟蓬 等. 增材制造AlCoCrFeNi2.1共晶高熵合金研究进展 [J]. 材料工程, 2024, 52(1): 70
doi: 10.11868/j.issn.1001-4381.2023.000568
|
| [11] |
Du L X, Ding H, Xie Y, et al. Effect of laser energy density on microstructures and properties of additively manufactured AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta. Metall. Sin. (Engl. Lett.), 2025, 38: 233
doi: 10.1007/s40195-024-01783-0
|
| [12] |
Wang J, Li Y, Lu B W, et al. Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy coatings fabricated by extreme high-speed and conventional laser cladding [J]. J. Therm. Spray. Technol., 2024, 33: 992
doi: 10.1007/s11666-024-01734-2
|
| [13] |
Wang D, Deng S J, Chen H, et al. Effect of Y2O3 addition on the microstructure and properties of NiCoCrAlYTa coatings prepared by electrospark deposition: From a perspective of thermal physical properties [J]. Surf. Coat. Technol., 2022, 451: 129040
doi: 10.1016/j.surfcoat.2022.129040
|
| [14] |
Jiang H, Li L, Wang J M, et al. Wear properties of spark plasma-sintered AlCoCrFeNi2.1 eutectic high entropy alloy with NbC additions [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 987
doi: 10.1007/s40195-023-01529-4
|
| [15] |
Vyas A, Menghani J, Natu H. Influence of WC particle on the metallurgical, mechanical, and corrosion behavior of AlFeCuCrCoNi-WC x high-entropy alloy coatings [J]. J. Mater. Eng. Perform., 2021, 30: 2449
doi: 10.1007/s11665-021-05523-8
|
| [16] |
Zhang A H, Jiang L, Deng H H, et al. Optimized wear behavior and oxidative strengthening mechanism of a WC reinforced high entropy composite coatings [J]. J. Mater. Res. Technol., 2025, 36: 6473
doi: 10.1016/j.jmrt.2025.04.194
|
| [17] |
Liu Z Y, Li Y C, Wang Y. Microstructure and wear resistance of spherical ceramic particles reinforced FeCoNiCrMn composite coating fabricated by laser directional energy deposition [J]. J. Mater. Res. Technol., 2025, 37: 1223
doi: 10.1016/j.jmrt.2025.06.097
|
| [18] |
Li Z S, Xie D Q, Liu Y, et al. Effect of WC on the microstructure and mechanical properties of laser-clad AlCoCrFeNi2.1 eutectic high-entropy alloy composite coatings [J]. J. Alloy. Compd., 2024, 976: 173219
doi: 10.1016/j.jallcom.2023.173219
|
| [19] |
Li Y, Yu Y Y, Wang J, et al. Effect of WC content on the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy coating prepared by ultra-high speed laser cladding technology [J]. Mater. Today Commun., 2024, 41: 110259
|
| [20] |
Liu H, Zhang Y, Wang W Q, et al. Investigating particle-size dependent on microstructure evolution and wear mechanisms of WC-reinforced AlCoCrFeNi2.1 high-entropy alloy composite coatings in laser cladding [J]. Eng. Fail. Anal., 2025, 179: 109759
doi: 10.1016/j.engfailanal.2025.109759
|
| [21] |
Yuan J H, Zhan Q, Huang J, et al. Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization [J]. Mater. Chem. Phys., 2013, 142: 165
doi: 10.1016/j.matchemphys.2013.06.052
|
| [22] |
Yang J X, Miao X H, Wang X B, et al. Influence of Mn additions on the microstructure and magnetic properties of FeNiCr/60%WC composite coating produced by laser cladding [J]. Int. J. Refract. Met. Hard Mater., 2014, 46: 58
doi: 10.1016/j.ijrmhm.2014.05.010
|
| [23] |
An X L, Liu Q B. Effect of WC particles on microstructure and properties of high entropy alloy SiFeCoCrTi coating synthesized by laser cladding [J]. Rare Met. Mater. Eng., 2016, 45: 2424
|
| [23] |
安旭龙, 刘其斌. WC颗粒对激光熔覆高熵合金SiFeCoCrTi涂层的组织及性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2424
|
| [24] |
Verma A, Singh J B, Kaushik S D, et al. Lattice parameter variation and its effect on precipitation behaviour of ordered Ni2(Cr,Mo) phase in Ni-Cr-Mo alloys [J]. J. Alloy. Compd., 2020, 813: 152195
doi: 10.1016/j.jallcom.2019.152195
|
| [25] |
Zhou R, Chen G, Liu B, et al. Microstructures and wear behaviour of (FeCoCrNi)1- x (WC) x high entropy alloy composites [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 56
doi: 10.1016/j.ijrmhm.2018.03.019
|
| [26] |
Long H Y, Dong Z, Lu B W, et al. Influence of WC content on microstructure and properties of laser⁃cladded FeCoNiCr high⁃entropy alloy coatings [J]. Chin. J. Lasers, 2023, 50: 2402206
|
| [26] |
龙海洋, 董 真, 卢冰文 等. WC含量对激光熔覆FeCoNiCr高熵合金涂层组织结构及性能的影响规律研究 [J]. 中国激光, 2023, 50: 2402206
|
| [27] |
Miao J W, Wang M L, Zhang A J, et al. Tribological properties and wear mechanism of AlCr1.3TiNi2 eutectic high-entropy alloy at elevated temperature [J]. Acta Metall. Sin., 2023, 59: 267
|
| [27] |
苗军伟, 王明亮, 张爱军 等. AlCr1.3TiNi2共晶高熵合金的高温摩擦学性能及磨损机理 [J]. 金属学报, 2023, 59: 267
doi: 10.11900/0412.1961.2021.00589
|
| [28] |
Duan H T, Du S M, Zhang Y Z, et al. Study on the friction heat rule under high-speed dry sliding conditions [J]. Lubr. Eng., 2007, 32(10): 40
|
| [28] |
段海涛, 杜三明, 张永振 等. 高速干滑动条件下钢/铜摩擦副摩擦磨损表面摩擦热规律研究 [J]. 润滑与密封, 2007, 32(10): 40
|
| [29] |
Listyawan T A, Agustianingrum M P, Na Y S, et al. Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy [J]. J. Mater. Sci. Technol., 2022, 129: 115
doi: 10.1016/j.jmst.2022.04.028
|
| [30] |
Xie Y, Su C, Huang Z X, et al. Improvement of oxidation resistance and alumina regrowth ability of Ni-30Cr-5Al alloy without and with Y: Nanocrystallization effect [J]. Corros. Sci., 2023, 223: 111472
doi: 10.1016/j.corsci.2023.111472
|
| [31] |
Lu S S, Zhou J S, Wang L Q, et al. Corrosion resistance and elevated-temperature wear properties of laser cladding Ni-Co composite coating on ductile cast iron [J]. China Surf. Eng., 2022, 35(3): 122
|
| [31] |
路世盛, 周健松, 王凌倩 等. 球墨铸铁表面激光熔覆Ni-Co复合涂层的耐腐蚀及高温摩擦学性能 [J]. 中国表面工程, 2022, 35(3): 122
|
| [32] |
Duan X T, Han T Z, Guan X, et al. Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates [J]. J. Mater. Sci. Technol., 2023, 136: 97
doi: 10.1016/j.jmst.2022.07.023
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|