Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 137-144     CSTR: 32134.14.1005.4537.2025.286      DOI: 10.11902/1005.4537.2025.286
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
SLM-316L不锈钢的高温氧化与腐蚀行为研究
冯浩轩1,2, 王馥丽1,3, 李甲林1, 杜瑶1(), 韦博鑫1, 朱圣龙1
1.中国科学院金属研究所材料表面工程研究部 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.东北大学材料科学与工程学院 沈阳 110819
High Temperature Oxidation and Corrosion Behavior of 316L Stainless Steel Prepared by Selected Laser Melting Process
FENG Haoxuan1,2, WANG Fuli1,3, LI Jialin1, DU Yao1(), WEI Boxin1, ZHU Shenglong1
1.Department of Surface Engineering Materials Research, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

冯浩轩, 王馥丽, 李甲林, 杜瑶, 韦博鑫, 朱圣龙. SLM-316L不锈钢的高温氧化与腐蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 137-144.
Haoxuan FENG, Fuli WANG, Jialin LI, Yao DU, Boxin WEI, Shenglong ZHU. High Temperature Oxidation and Corrosion Behavior of 316L Stainless Steel Prepared by Selected Laser Melting Process[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 137-144.

全文: PDF(10599 KB)   HTML
摘要: 

对比研究了选区激光熔化制备的316 (SLM-316)不锈钢与传统铸造316 (Cast-316)不锈钢在700 ℃高温环境下的氧化与盐腐蚀行为。结果表明,SLM-316不锈钢具有更优异的耐氧化和腐蚀性能。经200 h氧化后,其氧化增重仅为0.047 mg/cm2,氧化膜均匀致密,厚度低于1 μm;而Cast-316不锈钢氧化层出现明显分区,局部厚度超过10 μm,氧化增重达0.083 mg/cm2。在沉积固态NaCl的高温腐蚀环境中,二者均发生腐蚀,产物均以Fe2O3和NiCr2O4为主。其中,SLM-316不锈钢增重仅0.23 mg/cm2,而Cast-316不锈钢发生严重腐蚀产物剥落,失重达-2.4 mg/cm2。SLM工艺引入的超细亚晶结构促进了Cr2O3保护膜的快速形成,显著提升了材料的抗高温氧化与耐盐腐蚀性能。

关键词 高温盐腐蚀高温氧化选区激光熔化316不锈钢    
Abstract

The oxidation behavior in air and corrosion behavior beneath NaCl salt deposit film of selective laser melting prepared 316 stainless steel (SLM-316) and traditional cast 316 stainless steel (Cast-316) at 700 oC was comparatively studied. The results showed that the SLM-316 stainless steel exhibited superior high-temperature oxidation and corrosion resistance. After 200 h of oxidation, its weight gain was only 0.047 mg/cm2, and the formed oxide scale was uniform and compact, with a thickness of less than 1 μm; whereas the oxide scale of the Cast-316 stainless steel showed obvious zoning, with local thickness exceeding 10 μm and the corresponding weight gain reaching 0.083 mg/cm2. In the high-temperature corrosion environment with deposited solid NaCl, the two steels are suffered from corrosion but their corrosion degrees are different: SLM-316 stainless steel showed only a slight weight gain of 0.23 mg/cm2, while the Cast-316 stainless steel suffered severe corrosion accompanied by spallation of the corrosion products, resulting in a mass loss of -2.4 mg/cm2. The formed corrosion products of the two steels are composed mainly of Fe2O3 and NiCr2O4. It is proposed that the ultra-fine sub-grain structure introduced by the SLM process may promote the rapid formation of the Cr2O3 protective scale, significantly enhancing the high-temperature oxidation resistance and salt corrosion resistance of the 316 stainless steel.

Key wordshigh temperature salt corrosion    high temperature oxidation    selective laser melting    316 stainless steel
收稿日期: 2025-09-09      32134.14.1005.4537.2025.286
ZTFLH:  TG174  
通讯作者: 杜瑶,E-mail:ydu17s@imr.ac.cn,研究方向为高温防护涂层
作者简介: 冯浩轩,男,1998 年出生,中国科学院金属研究所在读博士研究生,主要从事高温防护涂层及其氧化性能调控研究。目前以第一作者发表SCI 学术论文3 篇,作为核心骨干成员参与国家重点研发计划项目、国家自然科学基金面上项目、青年项目、以及多项企业委托的横向项目等。受邀独立担任Journal of Alloys and Compounds国际知名学术期刊审稿人。
杜瑶,博士,中国科学院金属研究所助理研究员,主要研究方向为高温防护涂层。目前担任Corrosion Communications青年编委,在Journal of Materials Science & Technology、Corrosion science 等国内外知名期刊发表SCI/EI论文20余篇。
图1  原始Cast-316与SLM-316不锈钢的XRD谱图和微观金相组织及SEM照片
图2  Cast-316与SLM-316不锈钢在700 ℃的质量变化曲线与氧化速率常数
图3  700 ℃氧化200 h后Cast-316与SLM-316不锈钢的XRD谱图
图4  Cast-316与SLM-316在700 ℃下氧化200 h后的微观表面、截面形貌
图5  Cast-316不锈钢在700 ℃氧化200 h后截面元素面分布图
图6  Cast-316与SLM-316不锈钢试样在700 ℃、沉积固态NaCl环境下的腐蚀动力学曲线
图7  Cast-316与SLM-316不锈钢试样在700 ℃、沉积固态NaCl环境下腐蚀200 h后的XRD谱图
图8  Cast-316与SLM-316不锈钢试样在沉积固态NaCl、700 ℃环境下的腐蚀200 h后试样的表面形貌
[1] Großwendt F, Becker L, Röttger A, et al. Impact of the allowed compositional range of additively manufactured 316L stainless steel on processability and material properties [J]. Materials, 2021, 14: 4074
doi: 10.3390/ma14154074
[2] Jamalkhani M, Khademitab M, Dashtgerd I, et al. Hot isostatic pressing of differently sintered binder jetted 316L stainless steel: Microstructure evolution and mechanical properties [J]. Mater. Today Commun., 2024, 40: 109529
[3] Abu-Warda N, García-Rodríguez S, Torres B, et al. Effect of molten salts composition on the corrosion behavior of additively manufactured 316L stainless steel for concentrating solar power [J]. Metals, 2024, 14: 639
doi: 10.3390/met14060639
[4] Wu M, Ren Y J, Ma Z C, et al. High temperature oxidation behavior of F55 super duplex stainless steel at 800-1000 oC in 1.013 ×105 Pa O2 [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1332
[4] 吴 铭, 任延杰, 马灼春 等. F55双相不锈钢在800~1000 ℃纯氧气中的高温氧化行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1332
[5] Chen P L, Zhao Y J, Li P Z, et al. High temperature oxidation and high temperature tensile properties of 316L stainless steel [J]. Trans. Mater. Heat Treat., 2022, 43(11): 103
[5] 陈珮琳, 赵艳君, 李平珍 等. 316L不锈钢高温氧化及高温拉伸性能 [J]. 材料热处理学报, 2024, 43(11): 103
[6] Hollander D A, Wirtz T, von Walter M, et al. Development of individual three-dimensional bone substitutes using “selective laser melting” [J]. Eur. J. Trauma, 2003, 29: 228
doi: 10.1007/s00068-003-1332-2
[7] Osakada K, Shiomi M. Flexible manufacturing of metallic products by selective laser melting of powder [J]. Int. J. Mach. Tools Manuf., 2006, 46: 1188
doi: 10.1016/j.ijmachtools.2006.01.024
[8] Wang H M, Zhang S Q, Wang T, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large Titanium components [J]. J. Xihua Univ. (Nat. Sci. Ed.), 2018, 37(4): 9
[8] 王华明, 张述泉, 王 韬 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展 [J]. 西华大学学报(自然科学版), 2018, 37(4): 9
[9] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components-Process, structure and properties [J]. Prog. Mater. Sci., 2018, 92: 112
doi: 10.1016/j.pmatsci.2017.10.001
[10] Sander G, Thomas S, Cruz V, et al. On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting [J]. J. Electrochem. Soc., 2017, 164: C250
doi: 10.1149/2.0551706jes
[11] Liu Y, Yang Y Q, Mai S Z, et al. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder [J]. Mater. Des., 2015, 87: 797
doi: 10.1016/j.matdes.2015.08.086
[12] Laleh M, Hughes A E, Xu W, et al. Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing [J]. Corros. Sci., 2020, 165: 108412
doi: 10.1016/j.corsci.2019.108412
[13] Li J L, Chen L J, Wei B, et al. Corrosion characterization in SLM-manufactured and wrought 316 L Stainless Steel induced by Desulfovibrio desulfuricans [J]. Constr. Build. Mater., 2025, 489: 140602
doi: 10.1016/j.conbuildmat.2025.140602
[14] Yuan P P, Gu D D, Dai D H. Particulate migration behavior and its mechanism during selective laser melting of TiC reinforced Al matrix nanocomposites [J]. Mater. Des., 2015, 82: 46
doi: 10.1016/j.matdes.2015.05.041
[15] Wang X Q, Carter L N, Pang B, et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy [J]. Acta Mater., 2017, 128: 87
doi: 10.1016/j.actamat.2017.02.007
[16] Park J M, Choe J, Kim J G, et al. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting [J]. Mater. Res. Lett., 2019, 8: 1
doi: 10.1080/21663831.2019.1638844
[17] Li L, Chen Y, Huang A H, et al. A novel NiCoCrAlPt high-entropy alloy with superb oxidation resistance at 1200 oC [J]. Corros. Sci., 2024, 228: 111819
doi: 10.1016/j.corsci.2024.111819
[18] Li L. Study on oxidation behavior of 316L stainless steel in high temperature environment and fluid corrosion of oxide film [D]. Beijing: China University of Petroleum (Beijing), 2020
[18] 李 琳. 316L不锈钢在高温环境的氧化行为及氧化膜的冲刷腐蚀研究 [D]. 北京: 中国石油大学(北京), 2020
[19] Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021 pmid: 29115290
[20] Hao W X, Shi D, Zhao Z H, et al. Comparison of microstructure and properties between 316L plate and materials formed by selective laser melting [J]. MW Met. Form., 2025, (4): 142
[20] 郝维勋, 史 丹, 赵中赫 等. 316L板材与选区激光熔化成形材料的组织和性能对比 [J]. 金属加工(热加工), 2025, (4): 142
[21] Yin P, Hou L F, Du Y H, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
[21] 尹 璞, 侯利峰, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
[22] Liu X L, Ma H T, Wang L, et al. Thermal corrosion behavior of KCl coating on the surface of pre-oxidized Fe-Cr alloy [J]. Mater. Prot., 2009, 42(9): 12
[22] 刘晓亮, 马海涛, 王 来 等. Fe-Cr合金预氧化后涂覆KCl盐膜的热腐蚀行为 [J]. 材料保护, 2009, 42(9): 12
[23] Shi Z Y. Hot corrosion mechanism and protection of stainless steel in molten chloride salt [D]. Wuhan: Wuhan University of Science and Technology, 2024
[23] 石振宇. 不锈钢在氯化物熔盐中的热腐蚀机理及防护研究 [D]. 武汉: 武汉科技大学, 2024
[24] Lu Y, Chen B, Wang J W, et al. Corrosion behavior of Cr, Fe and Ni based superalloy in molten NaCl [J]. Rare Met. Mater. Eng., 2014, 43: 17
doi: 10.1016/S1875-5372(14)60044-8
[1] 祝丁丁, 赵希雅, 张晓美, 梅子期, 逯文君, 王帅. 增材制造与铸造钛铝合金的微观组织及高温氧化行为对比研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[2] 庄钊涛, 严豪杰, 谢冰, 桂也, 孙擎擎, 伍廉奎, 曹发和. 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
[3] 叶俊, 罗鑫, 镇咸生, 李新平, 谢云, 彭晓. Inconel 718合金在750 ℃下不同气氛中的氧化与热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[4] 张晗, 刘轩溱, 黄爱辉, 赵晓峰, 陆杰. 热障涂层金属粘结层制备与研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[5] 许习文, 舒小勇, 陈智群, 何海瑞, 董舒赫, 房雨晴, 彭晓. DD6单晶Ni基高温合金表面CVDAl涂层的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[6] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[7] 张彩云, 李帅, 鲍泽斌, 朱圣龙, 王福会. 氧化不同时间(Ni, Pt)Al涂层的退除及再涂覆行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[8] 陈辉, 徐福斌, 方亚雄, 朱忠亮. Super304H不锈钢在605 ℃640 ℃超临界水中的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[9] 郭静波, 杨守华, 周子翼, 牟仁德, 谢云, 舒小勇, 戴建伟, 彭晓. 激光增材制造AlCoCrFeNiSi高熵合金的氧化行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[10] 范春华, 吴钱林, 薛山, 葛佳璐. 添加CrSi对火驱N80碳钢注气井氧化行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[11] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[12] 吴亮亮, 殷若展, 陈朝旭, 梁君岳, 孙擎擎, 伍廉奎, 曹发和. Ti45Al8.5Nb合金表面Zr-SiO2 复合涂层的制备及其抗高温氧化性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[13] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[14] 吴铭, 任延杰, 马灼春, 张思甜, 陈荐, 牛焱. F55双相不锈钢在800~1000℃纯氧气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2024, 44(5): 1332-1338.
[15] 张帮彦, 吴洪斌, 胡雪刚, 董家键, 郑世杰, 尹蔚蔚, 张方宇, 田礼熙, 刘光明. 机械合金化+放电等子烧结FeCrAl/La2Zr2O7 复合材料高温氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.