|
|
|
| 无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性 |
纪云瀚1, 王勤英1,2( ), 郑杰1, 李怡璇1, 西宇辰1, 董立谨1, 张杨飞3, 白树林3 |
1.西南石油大学新能源与材料学院 成都 610500 2.四川省页岩气高效开采先进材料制备技术工程研究中心 成都 610500 3.北京大学材料科学与工程学院 北京 100871 |
|
| Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel |
JI Yunhan1, WANG Qinying1,2( ), ZHENG Jie1, LI Yixuan1, XI Yuchen1, DONG Lijin1, ZHANG Yangfei3, BAI Shulin3 |
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China 2.Sichuan Provincial Engineering Research Center of Advanced Materials Manufacturing Technology for Shale Gas High-efficient Exploitation, Chengdu 610500, China 3.School of Materials Science and Engineering, Peking University, Beijing 100871, China |
引用本文:
纪云瀚, 王勤英, 郑杰, 李怡璇, 西宇辰, 董立谨, 张杨飞, 白树林. 无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
Yunhan JI,
Qinying WANG,
Jie ZHENG,
Yixuan LI,
Yuchen XI,
Lijin DONG,
Yangfei ZHANG,
Shulin BAI.
Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 175-185.
| [1] |
Saller G, Aigner H. High nitrogen alloyed steels for nonmagnetic drill collars. Standard steel grades and latest developments [J]. Mater. Manuf. Process., 2004, 19: 41
doi: 10.1081/AMP-120027497
|
| [2] |
Maher M, Iraola-Arregui I, Ben Youcef H, et al. The synergistic effect of wear-corrosion in stainless steels: a review [J]. Mater. Today Proc., 2022, 51: 1975
|
| [3] |
Sun F H, Ren Y J, Song W Q. Research status and progress of laser clad coatings on 42CrMo steel [J] J. Chin. Soc. Corros. Prot., 2025, 45: 849
|
| [3] |
孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展 [J]. 中国腐蚀与防护学报, 2025, 45: 849
doi: 10.11902/1005.4537.2024.378
|
| [4] |
Song Y H, Wang Q Y, Xie Y F, et al. Microstructure and tribocorrosion mechanism of laser additive manufacturing IN625 coating [J]. Wear, 2025, 564-565: 205727
doi: 10.1016/j.wear.2024.205727
|
| [5] |
Yang C L, Lu Y L, Kong D J. Laser cladded Ni625-xCr3C2 coatings: microstructure, tribocorrosion and electrochemical properties [J]. Surf. Coat. Technol., 2024, 478: 130487
doi: 10.1016/j.surfcoat.2024.130487
|
| [6] |
Sun W T, Huang X H, Zhang J, et al. The roles of microstructural anisotropy in tribo-corrosion performance of one certain laser cladding Fe-based alloy [J]. Friction, 2023, 11: 1673
doi: 10.1007/s40544-022-0682-x
|
| [7] |
Cui B, Zhou P Q, Lv Y. Research progress in and defect improvement measures for laser cladding [J]. Materials, 2025, 18: 3206
doi: 10.3390/ma18133206
|
| [8] |
Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels [J]. Sci. Technol. Adv. Mater., 2004, 5: 231
doi: 10.1016/j.stam.2003.10.006
|
| [9] |
Yu C J, Zhang D B, Liu Z G, et al. Study on nitrogen pores, microstructure, and mechanical properties of nickel-free high-nitrogen stainless steel fabricated via LDED regulated by heat input [J]. Virtual Phys. Prototyp., 2025, 20: e2445711
doi: 10.1080/17452759.2024.2445711
|
| [10] |
Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J]. Acta Mater., 2019, 168: 261
doi: 10.1016/j.actamat.2019.02.020
|
| [11] |
Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing [J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
|
| [12] |
Liu G M, Liu Y Y, Cheng Y W, et al. The intergranular corrosion susceptibility of metastable austenitic Cr-Mn-Ni-N-Cu high-strength stainless steel under various heat treatments [J]. Materials, 2019, 12: 1385
doi: 10.3390/ma12091385
|
| [13] |
Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 K [J]. J. Phys. Chem. Ref. Data, 1989, 18: 1
doi: 10.1063/1.555839
|
| [14] |
Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel [J]. Corros. Sci., 2015, 100: 295
doi: 10.1016/j.corsci.2015.08.009
|
| [15] |
Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
doi: 10.1016/j.jallcom.2014.08.243
|
| [16] |
Szummer A, Janik-Czachor M. Corrosion behaviour of low-manganese stainless steels [J]. Corros. Sci., 1993, 35: 317
doi: 10.1016/0010-938X(93)90163-B
|
| [17] |
Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5M NaCl solution [J]. Mater. Chem. Phys., 2011, 129: 138
doi: 10.1016/j.matchemphys.2011.03.063
|
| [18] |
Zemlik M, Białobrzeska B, Stachowicz M, et al. The influence of grain size on the abrasive wear resistance of hardox 500 Steel [J]. Appl. Sci., 2024, 14: 11490
doi: 10.3390/app142411490
|
| [19] |
Yang S P, Huang S Y, Li G, et al. Interaction behavior of wear and corrosion of highstrength marine steels for polar navigation vessels [J] J. Chin. Soc. Corros. Prot., 2025, 45: 894
|
| [19] |
杨淞普, 黄诗雨, 李 刚 等. 极地航行船舶用高强钢的磨损腐蚀交互作用机制 [J]. 中国腐蚀与防护学报, 2025, 45: 894
doi: 10.11902/1005.4537.2024.298
|
| [20] |
Du J, Hu L L, Sun J, et al. Tribo-corrosion performance of 7075-T6 Al-alloy in 3.5%NaCl solution [J] J. Chin. Soc. Corros. Prot., 2025, 45: 803
|
| [20] |
杜 晋, 胡林岚, 孙 健 等. 7075-T6铝合金在3.5%NaCl溶液中的摩擦腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 803
|
| [21] |
Hardell J, Hernandez S, Mozgovoy S, et al. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures [J]. Wear, 2015, 330-331: 223
doi: 10.1016/j.wear.2015.02.040
|
| [22] |
Yang X D, Li C W, Ye Z H, et al. Effects of tribo-film on wear resistance of additive manufactured cobalt-based alloys during the sliding process [J]. Surf. Coat. Technol., 2021, 427: 127784
doi: 10.1016/j.surfcoat.2021.127784
|
| [23] |
Ura-Bińczyk E. Effect of grain refinement on the corrosion resistance of 316L stainless steel [J]. Materials, 2021, 14: 7517
doi: 10.3390/ma14247517
|
| [24] |
Chen H, Bettayeb M, Maurice V, et al. Local passivation of metals at grain boundaries: In situ scanning tunneling microscopy study on copper [J]. Corros. Sci., 2016, 111: 659
doi: 10.1016/j.corsci.2016.04.013
|
| [25] |
Tian H Y, Wang J, Liu Z Q, et al. Effect of nitrogen on the corrosion resistance of 6Mo super austenitic stainless steel [J]. Metals, 2024, 14: 391
doi: 10.3390/met14040391
|
| [26] |
Ha H Y, Lee T H, Kim S J. Synergistic effect of Ni and N on improvement of pitting corrosion resistance of high nitrogen stainless steels [J]. Corros. Eng. Sci. Technol., 2014, 49: 82
doi: 10.1179/1743278213Y.0000000138
|
| [27] |
Gao F Y, Qiao Y X, Chen J, et al. Effect of nitrogen content on corrosion behavior of high-nitrogen austenitic stainless steel [J]. npj Mater. Degrad., 2023, 7: 75
doi: 10.1038/s41529-023-00394-x
|
| [28] |
Loable C, Viçosa I N, Mesquita T J, et al. Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effect [J]. Mater. Chem. Phys., 2017, 186: 237
doi: 10.1016/j.matchemphys.2016.10.049
|
| [29] |
Obadele B A, Andrews A, Shongwe M B, et al. Tribocorrosion behaviours of AISI 310 and AISI 316 austenitic stainless steels in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2016, 171: 239
doi: 10.1016/j.matchemphys.2016.01.013
|
| [30] |
Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution [J]. Tribol. Int., 2016, 95: 358
doi: 10.1016/j.triboint.2015.11.046
|
| [31] |
Wang J, Zhao P P, Wang C T, et al. Synergistic tribo-corrosion behavior of TC4 alloy in artificial seawater containing sulfur ions [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1764
|
| [31] |
王 杰, 赵平平, 王春婷 等. TC4钛合金在含S2-海水中的腐蚀磨损行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1764
|
| [32] |
Zhang B B, Wang J Z, Liu H, et al. Tribocorrosion properties of AISI 1045 and AISI 2205 steels in seawater: Synergistic interactions of wear and corrosion [J]. Friction, 2021, 9: 929
doi: 10.1007/s40544-020-0376-1
|
| [33] |
Natarajan R, Palaniswamy N, Natesan M, et al. XPS analysis of passive film on stainless steel [J]. Open Corros. J., 2009, 2: 114
doi: 10.2174/1876503300902010114
|
| [34] |
Hermas A A. XPS analysis of the passive film formed on austenitic stainless steel coated with conductive polymer [J]. Corros. Sci., 2008, 50: 2498
doi: 10.1016/j.corsci.2008.06.019
|
| [35] |
Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
doi: 10.1016/S0013-4686(02)00841-1
|
| [36] |
De Oliveira M M, Costa H L, Silva W M, et al. Effect of iron oxide debris on the reciprocating sliding wear of tool steels [J]. Wear, 2019, 426-427: 1065
doi: 10.1016/j.wear.2018.12.047
|
| [37] |
Zou J Y, Wang Z W, Ma Y L, et al. Tribocorrosion behavior and degradation mechanism of 316L stainless steel in alkaline solution: Effect of tribo-film [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1365
doi: 10.1007/s40195-022-01374-x
|
| [38] |
Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism [J]. Wear, 1995, 181-183: 476
doi: 10.1016/0043-1648(94)07108-X
|
| [39] |
Cao F Y, Wang H Q, Ji Q, et al. Tribo-corrosion performance of atmospheric plasma sprayed FeCoCrNiMn high entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1529
|
| [39] |
曹甫洋, 王浩权, 季 谦 等. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能 [J]. 中国腐蚀与防护学报, 2024, 44: 1529
doi: 10.11902/1005.4537.2024.060
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|