Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 175-185     CSTR: 32134.14.1005.4537.2025.284      DOI: 10.11902/1005.4537.2025.284
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性
纪云瀚1, 王勤英1,2(), 郑杰1, 李怡璇1, 西宇辰1, 董立谨1, 张杨飞3, 白树林3
1.西南石油大学新能源与材料学院 成都 610500
2.四川省页岩气高效开采先进材料制备技术工程研究中心 成都 610500
3.北京大学材料科学与工程学院 北京 100871
Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel
JI Yunhan1, WANG Qinying1,2(), ZHENG Jie1, LI Yixuan1, XI Yuchen1, DONG Lijin1, ZHANG Yangfei3, BAI Shulin3
1.School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2.Sichuan Provincial Engineering Research Center of Advanced Materials Manufacturing Technology for Shale Gas High-efficient Exploitation, Chengdu 610500, China
3.School of Materials Science and Engineering, Peking University, Beijing 100871, China
引用本文:

纪云瀚, 王勤英, 郑杰, 李怡璇, 西宇辰, 董立谨, 张杨飞, 白树林. 无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
Yunhan JI, Qinying WANG, Jie ZHENG, Yixuan LI, Yuchen XI, Lijin DONG, Yangfei ZHANG, Shulin BAI. Microstructure and Tribocorrosion Behavior of Laser Cladding Coating of a Non-magnetic Drill Collar Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 175-185.

全文: PDF(25032 KB)   HTML
摘要: 

无磁钻铤是定向钻井中的关键部件,失效会严重威胁钻井安全,造成巨大经济损失。为提升其服役寿命,本文采用激光熔覆技术在无磁钻铤常用钢P550不锈钢表面制备了同质熔覆层,并对比分析了基体与熔覆层的腐蚀磨损行为。结果表明,激光熔覆不仅使熔覆层晶粒尺寸从42.85 μm显著细化至10.37 μm,还促使N元素在晶界处富集;使熔覆层在静态下的钝化区较基体拓宽了2.7倍,在动态磨损中,其动电位极化曲线也表现出持续的钝化特征,电化学稳定性提升。同时,由于熔覆层再钝化能力良好,且磨损表面生成富Fe2+保护性氧化层,其磨损体积损失低于基体。

关键词 无磁钻铤不锈钢激光熔覆腐蚀磨损    
Abstract

Non-magnetic drill collars are critical components in directional drilling, and their failure can severely compromise drilling safety, leading to significant economic losses. To enhance their service life, a laser cladding coating on the surface of P550 stainless steel, which is commonly used for non-magnetic drill collars was made via laser cladding technique with powders of the same composition of P550 stainless steel as filler material. The results indicate that the laser cladding presents significantly refined the grain size of 10.37 μm, in contrast to 42.85 μm of the substrate steel, meanwhile the cladding process also promots the enrichment of N at the grain boundaries. Consequently, the passivation zone of the cladding coating was broadened by 2.7 times compared to the substrate when immersion in 3.5% (mass fraction) NaCl solotion. During dynamic wear processits potentiodynamic polarization curve also exhibited the continuous passivation characteristics of the cladding, demonstrating its enhanced electrochemical stability. Furthermore, owing to the excellent re-passivation capability of the cladding coating and the formation of an Fe2+-rich oxide scale on the worn surface, its wear volume loss was lower than that of the substrate.

Key wordsnon-magnetic drill collar stainless steel    laser cladding    tribocorrosion
收稿日期: 2025-09-08      32134.14.1005.4537.2025.284
ZTFLH:  TG178  
基金资助:国家自然科学基金(52174007);四川省科技厅项目(2025YFHZ0050)
通讯作者: 王勤英,E-mail:wangqy0401@swpu.edu.cn,研究方向为表面处理及防腐
作者简介: 纪云瀚,男,2000年生,硕士生
王勤英,1987年生,2015年毕业于北京大学,获博士学位,后于加拿大阿尔伯塔大学从事博士后工作。现就职于西南石油大学,教授,博士生导师。长期从事油气田材料腐蚀与防护及油气装备激光增材修复研究。针对极端油气开发钻采装备/工具失效难题,研发了高耐蚀耐磨激光增材强化/修复层材料体系与技术,揭示了极端油气钻采工况下强化/修复层服役行为及机制,创建了强化/修复层服役寿命预测模型与分析方法,形成了油气装备激光增材强化/修复全流程工艺,在油气及油服企业应用成效显著。主持国家自然科学基金面上、青年基金项目等纵向项目10余项,以第一或通讯作者在Corros. Sci.、Wear 等期刊发表论文45篇(含ESI 高被引论文1 篇),出版英文专著1部,授权发明专利12 件(含PCT专利1 件),登记软件著作权5件。牵头获中国腐蚀与防护学会杰出青年学术成就奖、中国石油和化工自动化行业科技进步二等奖、四川省科技进步三等奖等各类科技奖励8 项。先后入选澳大利亚“奋进”学者、中国科协“青年人才托举工程”、四川省学术和技术带头人后备人选,担任《中国腐蚀与防护学报》青年编委。
图1  P550不锈钢粉末的形貌、粒径分布及激光熔覆示意图
图2  P550不锈钢基体与熔覆层经10%草酸溶液电解腐蚀后的光学显微组织
图3  P550不锈钢基体与熔覆层的XRD图谱和P550不锈钢熔覆层横截面的SEM形貌
SiteFeCrMnCNNiMoSi
144.8318.2422.378.431.023.810.980.33
250.8418.0216.9510.850.512.59-0.24
表1  图3b中P550不锈钢熔覆层标记位置1和2的EDS元素含量结果
图4  P550不锈钢基体与熔覆层在不同电化学状态下的磨损表面三维轮廓
图5  P550不锈钢基体与熔覆层在不同电化学状态下的磨痕截面平均深度分布及摩擦系数
图6  OCP下P550不锈钢熔覆层与基体的磨损表面SEM形貌及元素分布图
图7  阴极保护电位条件下P550不锈钢熔覆层与基体的磨损表面SEM形貌及元素分布
图8  P550不锈钢基体与熔覆层在静态和腐蚀磨损中的动电位极化曲线及开路电位
MaterialsEcorr / VIpass / A·cm-2
Substrate-0.451.42 × 10-4
Coating-0.541.30 × 10-4
表2  P550不锈钢基体与熔覆层在腐蚀磨损过程中的动电位极化曲线拟合结果
图9  OCP条件下P550不锈钢熔覆层与基体磨损表面的Fe 2p、Cr 2p和Mn 2p高分辨XPS光谱
图10  根据XPS图谱计算获得的元素价态组成
MaterialsVT / 10-4 mm-3VW / 10-4 mm-3VC / 10-4 mm-3VS / 10-4 mm-3VC / 10-4 mm-3VW / 10-4 mm-3
Substrate92.0027.407.47 × 10-364.591.51 × 10-164.44
Coating49.5825.044.33 × 10-324.541.40 × 10-124.40
表3  P550不锈钢基体与熔覆层腐蚀磨损后各体积损失分量表
图11  P550不锈钢基体与熔覆层腐蚀磨损后各体积损失分量占比柱状图
[1] Saller G, Aigner H. High nitrogen alloyed steels for nonmagnetic drill collars. Standard steel grades and latest developments [J]. Mater. Manuf. Process., 2004, 19: 41
doi: 10.1081/AMP-120027497
[2] Maher M, Iraola-Arregui I, Ben Youcef H, et al. The synergistic effect of wear-corrosion in stainless steels: a review [J]. Mater. Today Proc., 2022, 51: 1975
[3] Sun F H, Ren Y J, Song W Q. Research status and progress of laser clad coatings on 42CrMo steel [J] J. Chin. Soc. Corros. Prot., 2025, 45: 849
[3] 孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展 [J]. 中国腐蚀与防护学报, 2025, 45: 849
doi: 10.11902/1005.4537.2024.378
[4] Song Y H, Wang Q Y, Xie Y F, et al. Microstructure and tribocorrosion mechanism of laser additive manufacturing IN625 coating [J]. Wear, 2025, 564-565: 205727
doi: 10.1016/j.wear.2024.205727
[5] Yang C L, Lu Y L, Kong D J. Laser cladded Ni625-xCr3C2 coatings: microstructure, tribocorrosion and electrochemical properties [J]. Surf. Coat. Technol., 2024, 478: 130487
doi: 10.1016/j.surfcoat.2024.130487
[6] Sun W T, Huang X H, Zhang J, et al. The roles of microstructural anisotropy in tribo-corrosion performance of one certain laser cladding Fe-based alloy [J]. Friction, 2023, 11: 1673
doi: 10.1007/s40544-022-0682-x
[7] Cui B, Zhou P Q, Lv Y. Research progress in and defect improvement measures for laser cladding [J]. Materials, 2025, 18: 3206
doi: 10.3390/ma18133206
[8] Nishimoto K, Mori H. Hot cracking susceptibility in laser weld metal of high nitrogen stainless steels [J]. Sci. Technol. Adv. Mater., 2004, 5: 231
doi: 10.1016/j.stam.2003.10.006
[9] Yu C J, Zhang D B, Liu Z G, et al. Study on nitrogen pores, microstructure, and mechanical properties of nickel-free high-nitrogen stainless steel fabricated via LDED regulated by heat input [J]. Virtual Phys. Prototyp., 2025, 20: e2445711
doi: 10.1080/17452759.2024.2445711
[10] Bermingham M J, StJohn D H, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J]. Acta Mater., 2019, 168: 261
doi: 10.1016/j.actamat.2019.02.020
[11] Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing [J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
[12] Liu G M, Liu Y Y, Cheng Y W, et al. The intergranular corrosion susceptibility of metastable austenitic Cr-Mn-Ni-N-Cu high-strength stainless steel under various heat treatments [J]. Materials, 2019, 12: 1385
doi: 10.3390/ma12091385
[13] Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 K [J]. J. Phys. Chem. Ref. Data, 1989, 18: 1
doi: 10.1063/1.555839
[14] Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel [J]. Corros. Sci., 2015, 100: 295
doi: 10.1016/j.corsci.2015.08.009
[15] Park I J, Lee S M, Kang M, et al. Pitting corrosion behavior in advanced high strength steels [J]. J. Alloy. Compd., 2015, 619: 205
doi: 10.1016/j.jallcom.2014.08.243
[16] Szummer A, Janik-Czachor M. Corrosion behaviour of low-manganese stainless steels [J]. Corros. Sci., 1993, 35: 317
doi: 10.1016/0010-938X(93)90163-B
[17] Sun Y, Rana V. Tribocorrosion behaviour of AISI 304 stainless steel in 0.5M NaCl solution [J]. Mater. Chem. Phys., 2011, 129: 138
doi: 10.1016/j.matchemphys.2011.03.063
[18] Zemlik M, Białobrzeska B, Stachowicz M, et al. The influence of grain size on the abrasive wear resistance of hardox 500 Steel [J]. Appl. Sci., 2024, 14: 11490
doi: 10.3390/app142411490
[19] Yang S P, Huang S Y, Li G, et al. Interaction behavior of wear and corrosion of highstrength marine steels for polar navigation vessels [J] J. Chin. Soc. Corros. Prot., 2025, 45: 894
[19] 杨淞普, 黄诗雨, 李 刚 等. 极地航行船舶用高强钢的磨损腐蚀交互作用机制 [J]. 中国腐蚀与防护学报, 2025, 45: 894
doi: 10.11902/1005.4537.2024.298
[20] Du J, Hu L L, Sun J, et al. Tribo-corrosion performance of 7075-T6 Al-alloy in 3.5%NaCl solution [J] J. Chin. Soc. Corros. Prot., 2025, 45: 803
[20] 杜 晋, 胡林岚, 孙 健 等. 7075-T6铝合金在3.5%NaCl溶液中的摩擦腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 803
[21] Hardell J, Hernandez S, Mozgovoy S, et al. Effect of oxide layers and near surface transformations on friction and wear during tool steel and boron steel interaction at high temperatures [J]. Wear, 2015, 330-331: 223
doi: 10.1016/j.wear.2015.02.040
[22] Yang X D, Li C W, Ye Z H, et al. Effects of tribo-film on wear resistance of additive manufactured cobalt-based alloys during the sliding process [J]. Surf. Coat. Technol., 2021, 427: 127784
doi: 10.1016/j.surfcoat.2021.127784
[23] Ura-Bińczyk E. Effect of grain refinement on the corrosion resistance of 316L stainless steel [J]. Materials, 2021, 14: 7517
doi: 10.3390/ma14247517
[24] Chen H, Bettayeb M, Maurice V, et al. Local passivation of metals at grain boundaries: In situ scanning tunneling microscopy study on copper [J]. Corros. Sci., 2016, 111: 659
doi: 10.1016/j.corsci.2016.04.013
[25] Tian H Y, Wang J, Liu Z Q, et al. Effect of nitrogen on the corrosion resistance of 6Mo super austenitic stainless steel [J]. Metals, 2024, 14: 391
doi: 10.3390/met14040391
[26] Ha H Y, Lee T H, Kim S J. Synergistic effect of Ni and N on improvement of pitting corrosion resistance of high nitrogen stainless steels [J]. Corros. Eng. Sci. Technol., 2014, 49: 82
doi: 10.1179/1743278213Y.0000000138
[27] Gao F Y, Qiao Y X, Chen J, et al. Effect of nitrogen content on corrosion behavior of high-nitrogen austenitic stainless steel [J]. npj Mater. Degrad., 2023, 7: 75
doi: 10.1038/s41529-023-00394-x
[28] Loable C, Viçosa I N, Mesquita T J, et al. Synergy between molybdenum and nitrogen on the pitting corrosion and passive film resistance of austenitic stainless steels as a pH-dependent effect [J]. Mater. Chem. Phys., 2017, 186: 237
doi: 10.1016/j.matchemphys.2016.10.049
[29] Obadele B A, Andrews A, Shongwe M B, et al. Tribocorrosion behaviours of AISI 310 and AISI 316 austenitic stainless steels in 3.5%NaCl solution [J]. Mater. Chem. Phys., 2016, 171: 239
doi: 10.1016/j.matchemphys.2016.01.013
[30] Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution [J]. Tribol. Int., 2016, 95: 358
doi: 10.1016/j.triboint.2015.11.046
[31] Wang J, Zhao P P, Wang C T, et al. Synergistic tribo-corrosion behavior of TC4 alloy in artificial seawater containing sulfur ions [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1764
[31] 王 杰, 赵平平, 王春婷 等. TC4钛合金在含S2-海水中的腐蚀磨损行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1764
[32] Zhang B B, Wang J Z, Liu H, et al. Tribocorrosion properties of AISI 1045 and AISI 2205 steels in seawater: Synergistic interactions of wear and corrosion [J]. Friction, 2021, 9: 929
doi: 10.1007/s40544-020-0376-1
[33] Natarajan R, Palaniswamy N, Natesan M, et al. XPS analysis of passive film on stainless steel [J]. Open Corros. J., 2009, 2: 114
doi: 10.2174/1876503300902010114
[34] Hermas A A. XPS analysis of the passive film formed on austenitic stainless steel coated with conductive polymer [J]. Corros. Sci., 2008, 50: 2498
doi: 10.1016/j.corsci.2008.06.019
[35] Olsson C O A, Landolt D. Passive films on stainless steels—chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
doi: 10.1016/S0013-4686(02)00841-1
[36] De Oliveira M M, Costa H L, Silva W M, et al. Effect of iron oxide debris on the reciprocating sliding wear of tool steels [J]. Wear, 2019, 426-427: 1065
doi: 10.1016/j.wear.2018.12.047
[37] Zou J Y, Wang Z W, Ma Y L, et al. Tribocorrosion behavior and degradation mechanism of 316L stainless steel in alkaline solution: Effect of tribo-film [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1365
doi: 10.1007/s40195-022-01374-x
[38] Watson S W, Friedersdorf F J, Madsen B W, et al. Methods of measuring wear-corrosion synergism [J]. Wear, 1995, 181-183: 476
doi: 10.1016/0043-1648(94)07108-X
[39] Cao F Y, Wang H Q, Ji Q, et al. Tribo-corrosion performance of atmospheric plasma sprayed FeCoCrNiMn high entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1529
[39] 曹甫洋, 王浩权, 季 谦 等. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能 [J]. 中国腐蚀与防护学报, 2024, 44: 1529
doi: 10.11902/1005.4537.2024.060
[1] 胡红钰, 王跃飞, 严海心, 史建军, 吴多利. 激光熔覆液压支架立柱防腐耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
[2] 丁昊, 杜凌霄, 舒琴, 曹甫洋, 谢云, 彭晓. WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
[3] 刘海龙, 王力, 赵卫国, 韩嘉彧, 王轻松, 龙佳怡, 贺星, 高黎黎, 王华, 胡平. 钼合金表面Si-ZrB2-Ti-Cr多元涂层的激光熔覆制备及高温抗氧化性能[J]. 中国腐蚀与防护学报, 2026, 46(1): 155-164.
[4] 王杰, 赵平平, 王春婷, 竺婷婷, 杨丽景, 宋振纶. TC4钛合金在含S2- 海水中的腐蚀磨损行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1764-1772.
[5] 孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
[6] 杨淞普, 黄诗雨, 李刚, 林一, 郭娜, 刘涛, 董丽华. 极地航行船舶用高强钢的磨损腐蚀交互作用机制[J]. 中国腐蚀与防护学报, 2025, 45(4): 894-904.
[7] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[8] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[9] 邓双九, 李昌, 余梦辉, 韩兴. IN625激光熔覆层腐蚀致微裂纹扩展机理研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[10] 吴多利, 吴昊天, 孙珲, 史建军, 魏新龙, 张超. 激光熔覆高温防护涂层研究现状及发展方向[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[11] 裴书博, 万冬阳, 周萍, 曹国钦, 胡俊华. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(5): 873-878.
[12] 王永欣, 汪艺璇, 陈春林, 李祥, 贺南开, 李金龙. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[13] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[14] 余仁强,何建军,李微,任延杰,杨旺. 火电厂循环泵叶轮材料Cr30A在脱硫浆液腐蚀环境中的交互损伤失效行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 353-358.
[15] 陶永奇,刘刚,黎业生,曾志翔. 海水环境下2024铝合金腐蚀磨损性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 587-594.