Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1508-1516     CSTR: 32134.14.1005.4537.2025.070      DOI: 10.11902/1005.4537.2025.070
  综合评述 本期目录 | 过刊浏览 |
环保复合型融雪剂的研究进展
刘明, 冯富海, 汤玉斐()
西安理工大学材料科学与工程学院 陕西省腐蚀与防护重点实验室 西安 710048
Research Progress on Environmentally Friendly Composite De-icing Agents
LIU Ming, FENG Fuhai, TANG Yufei()
Shaanxi Province Key Laboratory of Corrosion and Protection, Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
引用本文:

刘明, 冯富海, 汤玉斐. 环保复合型融雪剂的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1508-1516.
Ming LIU, Fuhai FENG, Yufei TANG. Research Progress on Environmentally Friendly Composite De-icing Agents[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1508-1516.

全文: PDF(2609 KB)   HTML
摘要: 

针对传统氯盐型融雪剂(NaCl、CaCl2、MgCl2等)长期使用导致路面等基础设施腐蚀失效,同时对环境也造成了不可逆的损伤等因素,开发环保复合型融雪剂已成为该领域的重点研究方向之一。本文首先对目前国内外现有融雪剂的标准进行了总结;并对近期常用的氯盐型和非氯型融雪剂的制备及在使用中存在的问题进行了评述;同时,对环保型复合型融雪剂研究进展及发展方向进行了总结与展望。以期为高效环保复合型融雪剂的研制提供一定的指导。

关键词 融雪剂环保腐蚀醋酸钙镁盐有机酸盐    
Abstract

With the rapid expansion of China's highway network, winter precipitation in northern regions poses significant challenges to the transportation safety. De-icing agents have the advantages of simplicity in operation, and high efficiency in melting ice and snow in comparison to the mechanical snow removal, thus greatly enhance the convenience of traffic. However, the long term use of traditional chloride-based de-icing agents (NaCl, CaCl2, MgCl2, etc) will cause corrosion and failure of rout surface and other infrastructures and also causes irreversible damage to the environment. This paper systematically analyzes current standards for de-icing agents at home and abroad, a critical assessment was made of the formulations, actual application processes and limitations of conventional chloride-based and alternative non-chloride de-icing agents, and further reviews the recent advancements in eco-friendly composite de-icing technologies. Particular emphasis is placed on innovative material combinations that leverage synergistic effects between components to enhance ice-melting efficiency while minimizing environmental impact. The review concludes with a forward-looking perspective on sustainable development strategies for next-generation de-icing formulations, addressing critical needs for infrastructure preservation and ecological protection. We hope the paper could provide some critical insights to guide the rational design of high-performance, environmentally benign composite de-icing agents.

Key wordsDe-icing agent    environmentally friendly    corrosion    calcium magnesium acetate salt    organic acid salts
收稿日期: 2025-02-27      32134.14.1005.4537.2025.070
ZTFLH:  TG174  
基金资助:国家自然科学基金(52571097)
通讯作者: 汤玉斐,E-mail:yftang@xaut.edu.cn,研究方向为材料表面的功能化改性与腐蚀防护
Corresponding author: TANG Yufei, E-mail: yftang@xaut.edu.cn
作者简介: 刘 明,男,1987年生,博士,副教授
图1  常见融雪剂的冰点与浓度的关系[21]
图2  在-5 ℃不同融雪剂融雪效率与腐蚀导致的碳钢质量损失之间的关系[37]
图3  常见的融雪剂高冰压(Ip)随时间的冲量积累图[55]
图4  CMA分子结构[53]
图5  沥青混合料中添加缓释融雪剂的冰雪融化机理[68,69]
[1] Ministry of Transport. Statistical bulletin on the development of transport industry in 2023 [R]. 2024
[1] (交通运输部. 2023年交通运输行业发展统计公报 [R]. 2024)
[2] Guo M J, Kovalskiy V P. Research status of road deicing salt [R]. UDC, 2020
[3] Pan X D. Design of small snow blower in cold city streets and [D]. Qinhuangdao: Yanshan University, 2022
[3] (潘旭东. 寒地城市街巷小型除雪机设计 [D]. 秦皇岛: 燕山大学, 2022)
[4] Yu W B, Li S Y, Feng W J, et al. Snow and ice melting techniques of pavement: State of the art and development tendency [J]. J. Glaciol. Geocryol., 2011, 33: 933
[4] (喻文兵, 李双洋, 冯文杰 等. 道路融雪除冰技术现状与发展趋势分析 [J]. 冰川冻土, 2011, 33: 933)
[5] Elena Charola A, Rousset B, Bläuer C. Deicing salts: An overview [A]. 4th International Conference on Salt Weathering of Buildings and Stone Sculptures [C]. Potsdam, 2017
[6] Rhodes A L, Guswa A J. Storage and release of road-salt contamination from a calcareous lake-basin fen, Western Massachusetts, USA [J]. Sci. Total Environ., 2016, 545-546: 525
[7] European Salt Prooucers' Association. Environmental impact of winter mainte‐nance with salt [R]. 2021
[8] Zhao P, Sun G, Zhai J. Research progress and development trend of environmental-friendly snow melting agent [J]. Coal Qual. Technol., 2022, 37(1): 63
[8] (赵 鹏, 孙 刚, 翟 晶. 环保型融雪剂的研究进展与发展趋势 [J]. 煤质技术, 2022, 37(1): 63)
[9] Fang Y X. Effects of chloride deicing salt on physiological ecology characteristics of Sabina chinensis and relieving effect of fulvate acid potassium on salt stress [D]. Tai'an: Shandong Agricultural University, 2022
[9] (房有鑫. 氯盐融雪剂对桧柏生理生态特性的影响及黄腐酸钾对盐胁迫的缓解效应 [D]. 泰安: 山东农业大学, 2022)
[10] Tao S C, Yao J L, Chen C Y, et al. The impact of expressway snowmelt agent usage on the environment in an extreme freezing snow and sleet condition [J]. IOP Conf. Ser.: Earth Environ. Sci., 2018, 191: 012073
[11] Arnott S E, Celis-Salgado M P, Valleau R E, et al. Road salt impacts freshwater zooplankton at concentrations below current water quality guidelines [J]. Environ. Sci. Technol., 2020, 54: 9398
[12] Szklarek S, Górecka A, Salabert B, et al. Acute toxicity of seven de-icing salts on four zooplankton species-is there an “eco-friendly” alternative? [J]. Ecohydrol. Hydrobiol., 2022, 22: 589
[13] Baeva Y, Chernykh N, Shmerko S, et al. Risk assessment of ice-melter reagents for urban plants [J]. E3S Web Conf., 2020, 169: 01009
[14] Rødland E S, Okoffo E D, Rauert C, et al. Road de-icing salt: Assessment of a potential new source and pathway of microplastics particles from roads [J]. Sci. Total Environ., 2020, 738: 139352
[15] Liang X Y, Wang Z, He F L, et al. Mechanical properties of corroded carbon steel in chloride environment [J]. Build. Struct., 2022, 52(suppl.1): 1260
[15] (梁新亚, 王 珍, 何飞龙 等. 氯盐环境中腐蚀碳钢的力学性能研究 [J]. 建筑结构, 2022, 52(): 1260)
[16] Wang L P, Yang Q B. Effect and mechanism of NaCl-MgCl2 compounded deicing salt on the salt-frost scaling of concrete [J]. J. Build. Mater., 2023, 26: 129
[16] (汪林萍, 杨全兵. NaCl-MgCl2复合除冰盐对混凝土盐冻破坏的影响及其作用机理 [J]. 建筑材料学报, 2023, 26: 129)
[17] Ding Q M, Gao Y N, Hou W L, et al. Influence of Cl- concentration on corrosion behavior of reinforced concrete in soil [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 705
[17] (丁清苗, 高宇宁, 侯文亮 等. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 705)
[18] Li L, Chen Y Q, Gao P, et al. Corrosion resistance of various bridge steels in deicing salt environments [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 448
[18] (李 琳, 陈义庆, 高 鹏 等. 除冰盐环境下桥梁钢的耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 448)
[19] Wen Y, Xiong L, Chen W, et al. Chloride penetration resistance of polyvinyl alcohol fiber concrete under dry and wet cycle in chloride salt solutions [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 381
[19] (闻 洋, 熊 林, 陈 伟 等. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究 [J]. 中国腐蚀与防护学报, 2020, 40: 381)
[20] Zhang X. Research on snow-melting agent standards in China [J]. Environ. Prot. Circ. Econ., 2021, 41(12): 86
[20] (张 旭. 我国融雪剂标准研究 [J]. 环境保护与循环经济, 2021, 41(12): 86)
[21] Hoffmann M, Gruber M R, Hofko B, et al. Winterlife-effective, sustainable and non-corrosive de-icing agents in winter maintenance [A]. XVI World Winter Service and Road Resilience Congress [C]. Calgary, 2022
[22] Lü Y J, Dang B, Zhang Z W, et al. Performance of chlorine salt snow-melting agent based on improved SHRP ice-melting test [J]. J. China Foreign Highw., 2024, 44: 262
[22] (吕悦晶, 党 博, 张志伟 等. 基于改进SHRP融冰试验的氯盐融雪剂性能研究 [J]. 中外公路, 2024, 44: 262)
[23] Zeng Z M, Liu Z Q, Li L J, et al. Deicing effect of salt lake magnesium chloride [J]. J. Salt Lake Res., 2016, 24(4): 54
[23] (曾忠民, 刘志启, 李丽娟 等. 盐湖氯化镁融雪剂融冰效果的研究 [J]. 盐湖研究, 2016, 24(4): 54)
[24] Su Z J, Cui Y X, Xu J H, et al. Preparation and performance of compound chloride salt type snow melting agent [J]. J. Salt Chem. Ind., 2022, 51(1): 10
[24] (苏志俊, 崔耀星, 徐俊辉 等. 复合氯盐型融雪剂的制备及性能 [J]. 盐科学与化工, 2022, 51(1): 10)
[25] Wang J, Song S L, Guo M, et al. Study on the preparation and performance evaluation of a new high efficiency and environmental protection economic snow melting agent [A]. 2018 3rd IEEE International Conference on Intelligent Transportation Engineering (ICITE) [C]. Singapore, 2018
[26] Szklarek S, Górecka A, Wojtal-Frankiewicz A. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution-a review [J]. Sci. Total Environ., 2022, 805: 150289
[27] Folorunso O. A review on the impact of concrete corrosion and effective mitigation strategies [J]. Commun. Phys. Sci., 2023, 9: 651
[28] Tian Y P, Bao J W, Xie D Q, et al. The effects of organic corrosion inhibitor on concrete properties and frost resistance [J]. J. Build. Eng., 2023, 65: 105762
[29] Wang X X, Liu J P, Jin M, et al. A review of organic corrosion inhibitors for resistance under chloride attacks in reinforced concrete: background, mechanisms and evaluation methods [J]. Constr. Build. Mater., 2024, 433: 136583
[30] Cherubin A, Guerra J, Barrado E, et al. Addition of amines to molasses and lees as corrosion inhibitors in sustainable de-icing materials [J]. Sustain. Chem. Pharm., 2022, 29: 100789
[31] Garcia Serrada C, Vara Pazos E. Additive anticorrosive composition for deicing and antifreeze products, product that includes it and method of preparing them (Machine-translation by Google Translate, not legally binding) [P]. ES20150031105, 2015
[32] Zhang J Y. Studies on the snow-melting agent with crop-nutrition and friendly environment [D]. Zhengzhou: Zhengzhou University, 2004
[32] (张景亚. 环境友好、作物营养型融雪剂开发研究 [D]. 郑州: 郑州大学, 2004)
[33] Goyal A, Ganjian E, Pouya H S, et al. Inhibitor efficiency of migratory corrosion inhibitors to reduce corrosion in reinforced concrete exposed to high chloride environment [J]. Constr. Build. Mater., 2021, 303: 124461
[34] Bolzoni F, Brenna A, Ormellese M. Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete [J]. Cem. Concr. Res., 2022, 154: 106719
[35] Casanova L, Ceriani F, Messinese E, et al. Recent advances in the use of green corrosion inhibitors to prevent chloride-induced corrosion in reinforced concrete [J]. Materials, 2023, 16: 7462
[36] Anitha R, Chitra S, Hemapriya V, et al. Implications of eco-addition inhibitor to mitigate corrosion in reinforced steel embedded in concrete [J]. Constr. Build. Mater., 2019, 213: 246
[37] Gruber M R, Hofko B, Hoffmann M, et al. Deicing performance of common deicing agents for winter maintenance with and without corrosion-inhibiting substances [J]. Cold Reg. Sci. Technol., 2023, 208: 103795
[38] Shi C Y. Study on snowmelt agent improvement in Xinjiang area [D]. Urumqi: Xinjiang University, 2024
[38] (史春雨. 新疆地区改进型融雪剂研究 [D]. 乌鲁木齐: 新疆大学, 2024)
[39] Feng X. Sponge city construction in northern cold region: Study on salt snow melting agent [J]. North. Archit., 2024, 9(1): 52
[39] (冯 新. 北方寒地海绵城市建设——含盐融雪剂的研究 [J]. 北方建筑, 2024, 9(1): 52)
[40] Wang D, Zhao F Q, Tian Z N, et al. Preparation and effect of an environment-friendly snow-melting agent [J]. J. Chongqing Jiaotong Univ. (Nat. Sci.), 2020, 39(6): 92
[40] (王 东, 赵富强, 田中男 等. 环保型路用融雪剂制备及其功效研究 [J]. 重庆交通大学学报(自然科学版), 2020, 39(6): 92)
[41] Cassidy K J. The environmental impacts of the use of potassium acetate as an alternative deicer [D]. Minneapolis: University of Minnesota, 2022
[42] Ma H X, Yu H F, Tan Y S, et al. Ice pressure and icing volume expansion rate of acetate-based deicers under freezing conditions [J]. Constr. Build. Mater., 2021, 305: 124751
[43] Gulliver J S, Chun C L, Weiss P T, et al. Environmental impacts of potassium acetate as a road salt alternative (university of minnesota evaluation) [R]. St. Paul: Minnesota Department of Transportation Office of Research & Innovation, 2022
[44] Jing J. Preparation and efficiency of high speed environmental protection road snow melting agent [J]. World Build. Mater., 2024, 45(5): 23
[44] (荆 军. 环保型道路融雪剂制备及效率研究 [J]. 建材世界, 2024, 45(5): 23)
[45] Zhu S S, Feng Z W, Wang Y F, et al. Research on the preparation and application technology of new calcium magnesium acetate environmental protection snow-melting agent [J]. Value Eng., 2024, 43(2): 108
[45] (朱顺顺, 冯兆伟, 王邑帆 等. 新型醋酸钙镁盐环保融雪剂的制备与应用技术研究 [J]. 价值工程, 2024, 43(2): 108)
[46] Wang X G, Zhang Y D. The research progress and development direction of snow-melting agent [J]. Inorg. Chem. Ind., 2007, 39(3): 8
[46] (王小光, 章亚东. 融雪剂的研究进展及发展方向 [J]. 无机盐工业, 2007, 39(3): 8)
[47] Luan G Y, Wu J N, Kong L. Study on preparation of non chlorine snow melting agent at low temperature [J]. Shandong Chem. Ind., 2023, 52(23): 47
[47] (栾国颜, 吴江南, 孔 丽. 非氯低温融雪剂制备和性能研究 [J]. 山东化工, 2023, 52(23): 47)
[48] Li S S, Cui Y, Shang X M. Study on organic environment-friendly snow-melting agent [J]. Shandong Chem. Ind., 2023, 52(15): 15
[48] (李爽爽, 崔 嫣, 尚晓敏. 有机环保型融雪剂的研制 [J]. 山东化工, 2023, 52(15): 15)
[49] Rumak A, Kowalska D, Kowalewska A. Properties of de-icing agents for use on paved airfield pavements after their expiration dates [J]. J. KONBiN, 2020, 50: 391
[50] Ren Q Y, Zhang Y F, Hu J X, et al. Study of sodium acetate snow melting agent [J]. Guangdong Chem. Ind., 2022, 49(22): 42
[50] (任庆云, 张钰汾, 胡井香 等. 醋酸钠融雪剂的研究 [J]. 广东化工, 2022, 49(22): 42)
[51] Liu J, Liu H M, Shi K Y, et al. Preparation of CMA snow-melting agent by seawater and its dynamics experiment [J]. Environ. Sci. Herald, 2015, 34(5): 66
[51] (刘 靖, 刘恒明, 史可玉 等. 74107-水制备CMA融雪剂及动力学实验 [J]. 环境科学导刊, 2015, 34(5): 66)
[52] Yamin A, Rehman W U, Rahman A U, et al. Synthesis and deicing performance of calcium magnesium acetate from dolomitic limestone of Abbotabad region, Pakistan [J]. J. Chem. Technol. Metall., 2024, 59: 919
[53] Miller J R, LaLama M J, Kusnic R L, et al. On the nature of calcium magnesium acetate road deicer [J]. J. Solid State Chem., 2019, 270: 1
[54] Xu Y M, Liu Q, Zhang C H, et al. Research progress on application of CMA environmentally friendly deicer [J]. Chem. World, 2010, 51: 435
[54] (许英梅, 刘 倩, 仉春华 等. CMA类环保型融雪剂的应用研究进展 [J]. 化学世界, 2010, 51: 435)
[55] Zhang L Q, Jiang H C, Li J Q, et al. Study on new technology of melt-snow agent and its performance [J]. Mod. Chem. Ind., 2007, 27(suppl.1): 356
[55] (张良佺, 姜华昌, 李菊清 等. 醋酸钙镁盐的制备新工艺及产品性能研究 [J]. 现代化工, 2007, 27(): 356)
[56] Zhao Y F, Li J G, Zhao Q S, et al. Compounding performance and distribution mode of environment-friendly snow-melting agent and tailing sand [J]. J. Highw. Transp. Res. Dev., 2022, 39(suppl.2): 21
[56] (赵莺菲, 李俊国, 赵全胜 等. 环保型融雪剂和尾矿砂复配性能及撒布方式 [J]. 公路交通科技, 2022, 39(): 21)
[57] Li M Y, Tang J W, Liu Y, et al. Study on preparation process of calcium magnesium acetate snowmelt agent from phosphorous tailings by acetic acid hydrolysis [J]. Inorg. Chem. Ind., 2024, 56(1): 73
[57] (李梦雨, 汤建伟, 刘 咏 等. 醋酸酸解磷尾矿制备醋酸钙镁融雪剂工艺研究 [J]. 无机盐工业, 2024, 56(1): 73)
[58] Luo F. Preparation of acetate snow melting agent using solid wastes such as carbide slag [J]. Non-Met. Mines, 2022, 45(6): 6
[58] (雒 锋. 电石渣等固体废弃物制备醋酸盐融雪剂的研究 [J]. 非金属矿, 2022, 45(6): 6)
[59] Luan G Y, Shen J X, Yang L. Experimental research on snow melting agent of low freezing point based on straw ash [J]. Shandong Chem. Ind., 2023, 52(24): 73
[59] (栾国颜, 沈佳兴, 杨 靓. 草木灰基低冰点融雪剂的实验研究 [J]. 山东化工, 2023, 52(24): 73)
[60] Gao Z T, Li Z C, Jiang Q, et al. A method for preparing environment-friendly snow-melting agent from wood vinegar [J]. Chin. J. Appl. Chem., 2021, 38: 1022
[60] (高子亭, 李占超, 蒋 谦 等. 一种木醋液制备环保型融雪剂的方法 [J]. 应用化学, 2021, 38: 1022)
[61] Wang Y J, Huang Z X, Zhao M X, et al. Enhanced chloride-free snow-melting agent generation from organic wastewater by integrating bioconversion and synthesis [J]. Bioresour. Technol., 2022, 366: 128200
[62] Zhang X L, Jiao J X, Dong B B, et al. Synthesis, characterization and properties of environment-friendly composite deicers [J]. J. Nanyang Norm. Univ., 2011, 10(12): 48
[62] (张晓丽, 焦健侠, 董贝贝 等. 环境友好型复合式融雪剂的制备、表征及性能研究 [J]. 南阳师范学院学报, 2011, 10(12): 48)
[63] Guo Y N, Ding W, Xue Z F, et al. Preparation of environmental friendly snow-melting agent from wood vinegar and its application [J]. Liaoning Chem. Ind., 2014, 43: 1019
[63] (郭雅妮, 丁 玮, 薛中福 等. 木醋液制环保型融雪剂技术与应用研究 [J]. 辽宁化工, 2014, 43: 1019)
[64] Zhao Q. Research on new snow-melting agents [D]. Xi'an: Northwest University, 2012
[64] (赵 青. 新型融雪剂的研究 [D]. 西安: 西北大学, 2012)
[65] Yan Z, Liang J, Mu R F, et al. Effect of calcium magnesium ratio on the melting performance and corrosion resistance of CMA products [J]. Appl. Chem. Ind., 2019, 48: 1122
[65] (严 钊, 梁 纪, 穆荣芳 等. 钙镁比对矿粉CMA产物融冰性能和耐腐蚀行为的影响研究 [J]. 应用化工, 2019, 48: 1122)
[66] Han Y P, Gong P, Liu H M, et al. Environmental protection-type snow-melting agent from BFA compound [J]. Mod. Chem. Ind., 2016, 36(9): 80
[66] (韩永萍, 龚 平, 刘红梅 等. 环保型生化黄腐酸复合融雪剂的研究 [J]. 现代化工, 2016, 36(9): 80)
[67] Li Z R, Sheng Y Q. Effects of non-chlorine environmental-friendly snow-melting agents on seed germination and plant growth [J]. Environ. Sci. Technol., 2021, 44(3): 150
[67] (李兆冉, 盛彦清. 无氯型环保融雪剂对种子发芽及植株生长的影响 [J]. 环境科学与技术, 2021, 44(3): 150)
[68] Augeri F. Placement of experimental bituminous concrete mixture utilizing an asphalt additive (verglimit) [R]. Washington: The National Academies of Sciences, Engineering, and Medicine, 1987
[69] Zhang F, Zhao S. Preparation of long-lasting environment-friendly anti-icing agent suitable for snow and ice areas and its performance research [J]. SN Appl. Sci., 2023, 5: 80
[70] Yoshitami A, Iwao T, Shusuke S. Follow-up survey on powder/chloride freeze control pavement. Survey cases of Europe and Japan [J]. Pavement, 1997, 32: 8
[71] Li Y, Li T S, Xu Y F, et al. Research and application of multifunction asphalt pavement with with snow melt salt [J]. J. China Foreign Highw., 2012, 32(6): 85
[71] (李 悦, 李铁山, 徐玉峰 等. 多功能自融雪沥青路面的研究与应用 [J]. 中外公路, 2012, 32(6): 85)
[72] Bai Y J. Evaluate on the performance of snow melt salt asphalt mixture [D]. Xi'an: Chang'an University, 2012
[72] (白艳君. 盐化物融雪沥青混合料性能评价 [D]. 西安: 长安大学, 2012)
[73] Sun Z R. Develop and performance evaluate of sustained-release mixture include salt [D]. Harbin: Harbin Institute of Technology, 2012
[73] (孙嵘蓉. 缓释蓄盐沥青混合料的研发及性能的评价 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[74] He X N. Study on performance impact for polyester fibers into melting ice and snow MFL-asphalt mixture [J]. Highw. Eng., 2014, 39: 282
[74] (何湘宁. 聚脂纤维对MFL融冰化雪沥青混合料的性能影响研究 [J]. 公路工程, 2014, 39: 282)
[75] Sun J, Qian Z D, Luo S. Test and evaluation of road performance of ice-melting asphalt mixture [J]. Highway, 2013, 58(12): 204
[75] (孙 健, 钱振东, 罗 桑. 融冰化雪型沥青混合料路用性能的试验评价 [J]. 公路, 2013, 58(12): 204)
[76] Wu C S, Gao D X, Shangguan H N, et al. Phase-change/salt-based slow-release composite material for anti-icing and snow-melting [J]. Buildings, 2024, 14: 2177
[77] Liu Z Z, Li B, Yao T F, et al. Optimization of slow-release salt storage snowmelt aggregate preparation process and its slow-release performance based on response surface methodology-orthogonal test [J]. Constr. Build. Mater., 2024, 449: 138356
[1] 李伟华, 李中, 张丹妮, 徐大可. 微生物诱导矿化抑制金属腐蚀:机制、设计策略及展望[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
[2] 刘建阳, 韩扬, 于美燕, 王巍. 光响应多功能自修复涂层的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
[3] 叶俊, 罗鑫, 镇咸生, 李新平, 谢云, 彭晓. Inconel 718合金在750 ℃下不同气氛中的氧化与热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[4] 李兆南, 侯禹岑, 莒鹏, 庄铁钢, 陈景杰, 王明昱, 徐云泽. 模拟液滴电导率变化对碳钢大气腐蚀的影响机制研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1537-1548.
[5] 周洪涛, 王琳琳, 王旻, 王平, 马颖澈. Al含量对AFA钢耐铅铋腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1563-1574.
[6] 王立芳, 商孟超, 高希钰, 刘贵昌, 孙文. B30铜镍合金原始膜对其腐蚀的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1575-1588.
[7] 许诗源, 孟鑫, 杨亚璋, 刘辰, 张昭, 方晓祖. 腐蚀形貌对镁合金电化学阻抗谱特征的影响研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1589-1598.
[8] 彭望, 陈荐, 杨凌旭, 刘会军, 梁建平, 曾潮流. NaCl347HGH3539在熔融硝酸盐中热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[9] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[10] 邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[11] 孙士斌, 高浩, 常雪婷, 王东胜. 细晶FH40船用低温钢在海水-海冰中耦合失效行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1659-1668.
[12] 李瓒龙, 颜晴, 满成. 加压载荷和摩擦频率对7075铝合金磨损腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[13] 赵彪, 张永强, 田会云, 逄昆, 崔中雨. CO2 地层水环境温度变化对J55钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1689-1697.
[14] 张德平, 闫立震, 于洋, 杨广明, 代春宇, 孟乐, 徐博, 刘智勇. CO2 驱采油井复杂环境中N80油管断裂失效机理[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[15] 白英雄, 王艳丽, 李相伟, 吴泽峰, 张书彦. 热处理对激光选区熔化GH4099镍基高温合金900 ℃(75%Na2SO4 + 25%NaCl)热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.