Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1649-1658     CSTR: 32134.14.1005.4537.2025.013      DOI: 10.11902/1005.4537.2025.013
  研究报告 本期目录 | 过刊浏览 |
一种新型含铜钛合金的制备与抗菌性能研究
邓艳1, 彭子飘2, 刘毅超3,4, 钟显康5()
1 西南石油大学石油与天然气工程学院 成都 610500
2 中国石油塔里木油田分公司 库尔勒 841000
3 川庆钻探工程有限公司安全环保质量监督检测研究院 德阳 618300
4 四川科特检测技术有限公司 德阳 618300
5 西安交通大学化学工程与技术学院 西安 710049
Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy
DENG Yan1, PENG Zipiao2, LIU Yichao3,4, ZHONG Xiankang5()
1 College of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
2 Supervision Center, PetroChina Tarim Oilfield Branch, Korla 841000, China
3 Safety, Environmental Protection and Quality Supervision and Inspection Research Institute of Sichuan Qing Drilling and Exploration Engineering Co. Ltd. , Deyang 618300, China
4 Sichuan Cote Testing Technology Co. Ltd. , Deyang 618300, China
5 College of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
引用本文:

邓艳, 彭子飘, 刘毅超, 钟显康. 一种新型含铜钛合金的制备与抗菌性能研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
Yan DENG, Zipiao PENG, Yichao LIU, Xiankang ZHONG. Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1649-1658.

全文: PDF(16873 KB)   HTML
摘要: 

采用真空电弧熔炼的方式,制备了固溶温度为800 ℃的TC18-0.5Cu (ST800)、固溶温度为800 ℃时效处理温度为580 ℃的TC18-0.5Cu (ST800AG580)、固溶温度为800 ℃时效处理温度为620 ℃的TC18-0.5Cu(ST800AG620)。利用抗菌实验对新型含铜钛合金的抗菌性能进行了测试,通过表面形貌、生物膜厚度分析了硫酸盐还原菌(SRB)的生长状况,并基于共聚焦显微镜拍摄结果计算了钛合金的杀菌率。结果表明,3种经过不同热处理的新型含铜钛合金的杀菌率均能达到75%以上,热处理方式对杀菌效果无显著影响。含铜钛合金具有抗菌性能是由于合金中的铜在腐蚀环境中会溶出,Cu离子破坏了SRB等细菌的细菌膜,从而抑制细菌的生长。同时通过电化学测试,表明添加少量Cu并结合适当的热处理工艺提高了材料的耐腐蚀性能。

关键词 TC18钛合金微生物腐蚀抗菌    
Abstract

Currently, oil well tubing and surface pipelines are facing severe risks of microbial corrosion (MIC). Microorganisms can multiply in fracturing fluids, drilling muds, and formation water, resulting in significant corrosion and clogging of oil well tubing and surface pipelines, and other accidents, which seriously affect oil and gas production and safety. Ti-alloy has the advantages of corrosion resistance and high strength, but its antimicrobial properties require further investigation. This article, a novel Cu-containing Ti-alloy TC18-0.5Cu was made by vacuum arc melting, which then subjected to 800 oC solid solution treatment (ST800), 800 oC SS treatment plus 580 oC aging treatments (ST800AG580), and 800 oC SS treatment plus 620 oC aging treatment, respectively. Futher, the antimicrobial performance of the three alloys was assessed in sulfate-reducing bacteria (SRB) containing artificial formation waters, meanwhile the growth of sulfate-reducing bacteria (SRB) was analyzed by surface morphology and biofilm thickness, and the bactericidal rate of the Ti-alloys was calculated based on the results of the confocal microscope shots. The results showed that the sterilization rate of the three copper-containing Ti-alloys with different heat treatments could reach more than 75%, suggesting that the heat treatment processes had no significant effect on their sterilization effect. The antimicrobial property of the copper-containing Ti-alloy is due to the fact that the Cu in the alloys is dissolved in the corrosive environment, and the Cu ions destroy the bacterial membrane of bacteria such as SRB, thus inhibiting the growth of bacteria. Furthermore, electrochemical tests revealed that the addition of a small amount of copper, combined with a suitable heat treatment process, also improved the corrosion resistance of the alloy.

Key wordsTC18 Ti-alloy    microbial corrosion    antimicrobial
收稿日期: 2025-01-08      32134.14.1005.4537.2025.013
ZTFLH:  TG174  
基金资助:中国石油科技创新基金(2021DQ02-0504)
通讯作者: 钟显康,E-mail:zhongxk@yeah.net,研究方向为油气田腐蚀与防护、井筒完整性/管道完整性
Corresponding author: ZHONG Xiankang, E-mail: zhongxk@yeah.net
作者简介: 邓 艳,女,2000年生,硕士生
AlloyMoVZrAlCrFeCuTi
TC184.764.680.0185.200.710.79-Bal.
TC18-0.5Cu4.595.350.0164.580.731.170.53Bal.
表1  TC18和TC18-0.5Cu合金的成分 (mass fraction / %)
图1  TC18钛合金和3种经过不同热处理的TC18-0.5Cu合金的金相组织
图2  不同阳离子抗菌实验结束后SRB绝迹稀释结果
图3  TC18和3种经过不同热处理的TC18-0.5Cu合金表面SRB分布
图4  TC18钛合金和3种经过不同热处理的TC18-0.5Cu合金表面SRB生物膜厚度
图5  TC18钛合金和3种经过不同热处理的TC18-0.5Cu合金表面SRB活死染色结果
AlloyCounting resultAntibacterial rate
TC181194-
TC18-0.5Cu (ST800)28276.29%
TC18-0.5Cu (ST800AG580)29775.13%
TC18-0.5Cu (ST800AG620)29175.64%
表2  TC18合金和3种经过不同热处理的TC18-0.5Cu合金的抗菌率
图6  TC18钛合金、TC18-0.5Cu (ST800)合金和纯铜生物膜能谱分析
图7  TC18钛合金和3种经过不同热处理的TC18-0.5Cu合金在含SRB地层水环境中浸泡14 d后的EIS图谱
图8  用于拟合电化学阻抗谱数据的等效电路模型
图9  TC18钛合金和3种经过不同热处理的TC18-0.5Cu合金在含SRB地层水环境中浸泡14 d后的极化曲线
AlloybamV·dec-1bcmV·dec-1IcorrμA·cm-2EcorrV
TC18155.18174.523.51 × 10-6-0.732
TC18-0.5Cu(ST800)107.16104.944.67 × 10-6-0.669
TC18-0.5Cu(ST800AG580)113.04103.951.88 × 10-6-0.665
TC18-0.5Cu(ST800AG620)99.26892.3031.95 × 10-6-0.677
表3  图9中极化曲线的拟合数据
[1] Smith J E, Chandler R B, Boster P L. Titanium drill pipe for ultra-deep and deep directional drilling [A]. SPE/IADC Drilling Conference [C]. Amsterdam, 2001
[2] Pye D S, Holligan D, Cron C J, et al. The use of beta-c titanium for downhole production casing in geothermal wells [J]. Geothermics, 1989, 18: 259
[3] Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry [J]. Mater. Sci. Eng., 1998, 243A: 305
[4] Kane R D, Craig S, Venkatesh A. Titanium alloys for oil and gas service: A review [A]. Proceedings of the Corrosion 2009 [C]. Atlanta, 2009
[5] Smith J, Jellison M, Wilson G, et al. Titanium drill pipe a viable option for short-radius horizontal drilling [Z]. Drilling Contractor, 2000, 34
[6] Ronold K O, Stig W. Characteristic S-N curves for fatigue design of titanium risers [J]. OMAE, 2002. DOI: 10.1115/OMAE2002-28475
[7] StandardInternational. Petroleum and natural gas industries-Materials for use in H2S-containing environments in oil and gas production-Part 3: cracking-resistant CRAs (corrosion-resistant alloys) and other alloys [S]. ISO, 2020
[8] Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
[8] (张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795)
[9] Li X, Shang D Z, Yu H B, et al. Research progress on oil & gas pipeline corrosion induced by SRB [J]. Surf. Technol., 2021, 50(2): 211
[9] (李 鑫, 尚东芝, 于浩波 等. 油气管道SRB腐蚀研究新进展 [J]. 表面技术, 2021, 50(2): 211)
[10] Liu W, Li H L, Wu H X, et al. Mechanism of microbial film formation and its effect on material corrosion [J]. Global Mark., 2020, (17): 368
[10] (刘 伟, 李洪林, 吴海旭 等. 微生物膜的形成机制及其对材料腐蚀的影响 [J]. 环球市场, 2020, (17): 368)
[11] Yang J D, Xu F L, Hou J, et al. Research progress in microbial corrosion of metal materials and its prevention [J]. Equip. Environ. Eng., 2015, 12(1): 59
[11] (杨家东, 许凤玲, 侯 健 等. 金属材料的微生物腐蚀与防护研究进展 [J]. 装备环境工程, 2015, 12(1): 59)
[12] Shi X B, Xu D K, Yan M C, et al. Study on microbiologically influenced corrosion behavior of novel Cu-bearing pipeline steels [J]. Acta Metall. Sin., 2017, 53: 153
[12] (史显波, 徐大可, 闫茂成 等. 新型含Cu管线钢的微生物腐蚀行为研究 [J]. 金属学报, 2017, 53: 153)
[13] Cluff M A, Hartsock A, MacRae J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells [J]. Environ. Sci. Technol., 2014, 48: 6508
[14] Mohan A M, Hartsock A, Bibby K J, et al. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction [J]. Environ. Sci. Technol., 2013, 47: 13141
[15] Struchtemeyer C G, Davis J P, Elshahed M S. Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett shale [J]. Appl. Environ. Microbiol., 2011, 77: 4744
[16] Mao T, Yang H, Shi L. Analysis on corrosion of ground pipeline in Weiyuan shale gas field [J]. Chin. Eng. Oil Gas, 2019, 48(5): 83
[16] (毛 汀, 杨 航, 石 磊. 威远页岩气田地面管线腐蚀原因分析 [J]. 石油与天然气化工, 2019, 48(5): 83)
[17] Wang J W. Study on microstructure and properties of antibacterial Ti-Cu alloy [D]. Hefei: University of Science and Technology of China, 2019
[17] (王杰闻. 抗菌Ti-Cu合金的组织与性能研究 [D]. 合肥: 中国科学技术大学, 2019)
[18] Kolawole S K. Design and development of a novel antibacterial Cu-bearing TiZr-based alloy for biomedical applications [D]. Hefei: University of Science and Technology of China, 2021
[18] (Kolawole S K. 新型医用抗菌含铜钛锆基合金的设计与开发 [D]. 合肥: 中国科学技术大学, 2021)
[19] Peng C. Study on performance optimization of biomedical antibacterial Ti6AI4V-xCu alloy [D]. Hefei: University of Science and Technology of China, 2019
[19] (彭 聪. 生物医用抗菌Ti6Al4V-xCu合金的性能优化研究 [D]. 合肥: 中国科学技术大学, 2019)
[20] Chen M. Preparation of antibacterial Ti-Ag alloys and the effect of Ag existence form on the antibacterial property [D]. Shenyang: Northeastern University, 2015
[20] (陈 棉. 抗菌Ti-Ag合金的制备及Ag的存在形式对抗菌性能的影响 [D]. 沈阳: 东北大学, 2015)
[21] Puckett S D, Taylor E, Raimondo T, et al. The relationship between the nanostructure of titanium surfaces and bacterial attachment [J]. Biomaterials, 2010, 31: 706
[22] Wang Z Q. Study of surface modification by Ag/Cu ion implantation into medical metallic materials [D]. Tianjin: Tianjin University, 2006
[22] (王紫琴. Ag、Cu离子注入医用金属材料表面改性研究 [D]. 天津: 天津大学, 2006)
[23] Inoue Y, Uota M, Torikai T, et al. Antibacterial properties of nanostructured silver titanate thin films formed on a titanium plate [J]. J. Biomed. Mater. Res., 2010, 92A: 1171
[24] Rao T S, Kora A J, Anupkumar B, et al. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris) [J]. Corros. Sci., 2005, 47: 1071
[25] Ma Z. Preparations and properties of antibacterial Cu-bearing biomedical titanium alloys [D]. Dalian: Dalian University of Technology, 2015
[25] (马 政. 新型含铜抗菌钛合金的制备与性能研究 [D]. 大连: 大连理工大学, 2015)
[26] Zhang E L, Wang X Y, Chen M, et al. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application [J]. Mater. Sci. Eng., 2016, 69C: 1210
[27] Cai D G, Zhao X T, Yang L, et al. A novel biomedical titanium alloy with high antibacterial property and low elastic modulus [J]. J. Mater. Sci. Technol., 2021, 81: 13
[28] NACE TM0194 Field monitoring of bacterial growth in oil and gas systems [S]. NACE, 2014
[29] Yin L. Study on the performances of a new type of duplex stainless steel with high resistance to sulfate reducing bacteria induced corrosion [D]. Hefei: University of Science and Technology of China, 2021
[29] (尹 路. 新型耐硫酸盐还原菌腐蚀双相不锈钢的性能研究 [D]. 合肥: 中国科学技术大学, 2021)
[30] Li H N, Zhong X K, Hu J Y, et al. The inhibition of sulfate reducing bacteria adhesion and corrosion on the carbon steel surface using ZnO particles [J]. J. Adhes. Sci. Technol., 2023, 37: 270
[31] Despax B, Saulou C, Raynaud P, et al. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae [J]. Nanotechnology, 2011, 22: 175101
[32] Deng Y, Wang L L, Chen Y J, et al. Optimization of staining with SYTO 9/propidium iodide: interplay, kinetics and impact on Brevibacillus brevis [J]. BioTechniques, 2020, 69: 88
[33] Deng Y. Optimization of bacterial cell viability assays with the fluorophores SYTO 9 and propidium iodide and its mechanism based on flow cytometry [D]. Guangzhou: Jinan University, 2020
[33] (邓 颖. 基于流式细胞术的SYTO 9/PI细菌活性判定方法优化及其机理 [D]. 广州: 暨南大学, 2020)
[34] Li L L. Study on microbial corrosion behaviour of coiled tebing [D]. Xi'an: Xi'an Shiyou University, 2022
[34] (李磊磊. 连续管的微生物腐蚀行为研究 [D]. 西安: 西安石油大学, 2022)
[35] Tkacz J, Minda J, Fintová S, et al. Comparison of electrochemical methods for the evaluation of cast AZ91 magnesium alloy [J]. Materials, 2016, 9: 925
[36] Huang G T, Chan K Y, Fang H H P. Microbiologically induced corrosion of 70Cu-30Ni alloy in anaerobic seawater [J]. J. Electrochem. Soc., 2004, 151: B434
[37] Javadian S, Yousefi A, Neshati J. Synergistic effect of mixed cationic and anionic surfactants on the corrosion inhibitor behavior of mild steel in 3.5%NaCl [J]. Appl. Surf. Sci., 2013, 285: 674
[38] Jin G D, Qin H, Cao H L, et al. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium [J]. Biomaterials, 2014, 35: 7699
[39] Yin L, Xu D K, Yang C G, et al. Effect of Cu and Ag on microbiologically influenced corrosion resistance of 2205 duplex stainless steel in sulfate reducing bacteria [J]. Surf. Technol., 2019, 48(7): 316
[39] (尹 路, 徐大可, 杨春光 等. 银、铜复合添加对2205双相不锈钢耐硫酸盐还原菌腐蚀行为的影响 [J]. 表面技术, 2019, 48(7): 316)
[40] Liu H W, Xu D K, Yang K, et al. Corrosion of antibacterial Cu-bearing 316L stainless steels in the presence of sulfate reducing bacteria [J]. Corros. Sci., 2018, 132: 46
[41] Burghardt I, Lüthen F, Prinz C, et al. A dual function of copper in designing regenerative implants [J]. Biomaterials, 2015, 44: 36
[42] Warnes S L, Caves V, Keevil C W. Mechanism of copper surface toxicity in Escherichia coli O157: H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria [J]. Environ. Microbiol., 2012, 14: 1730
[1] 李雨情, 张铁志, 黄兴林, 孙振美, 张怡, 尹衍升. 耐压海乳杆菌对2205双相不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1619-1626.
[2] 杨宝齐, 闫茂成, 史显波, 高博文. 新型耐微生物腐蚀油管钢的硫酸盐还原菌腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
[3] 郭章伟, 叶婷雨, 郭娜, 刘涛. EH36钢中MoSRB附着和腐蚀的影响及机理[J]. 中国腐蚀与防护学报, 2025, 45(5): 1341-1350.
[4] 黄诗雨, 刘士琛, 杨淞普, 刘家兵, 李刚, 郭娜, 刘涛. FH40船用钢在模拟极地海水环境中的腐蚀与磨蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(4): 859-868.
[5] 张维智, 冯思乔, 宋霄鹏, 刘艾华, 唐德志, 闫茂成, 韩恩厚. 聚合物驱集输管道微生物腐蚀行为实验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[6] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[7] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[8] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[9] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[10] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[11] 曹京宜, 赵伊, 刘岩硕, 方志刚, 荆远, 李亮, 孟凡帝. 超疏水改性玄武岩/环氧涂层的制备及防护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1476-1484.
[12] 蒋泽, 翟晓凡, 张雨, 孙佳文, 蒋全通, 王优强, 段继周, 侯保荣. Co3O4-Zn复合镀层制备及其模拟酶催化防污活性研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1164-1176.
[13] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[14] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[15] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.