|
|
|
| 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究 |
庄钊涛, 严豪杰, 谢冰, 桂也, 孙擎擎, 伍廉奎( ), 曹发和 |
| 中山大学材料学院 深圳 518107 |
|
| High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy |
ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui( ), CAO Fahe |
| School of Materials, Sun Yat-sen University, Shenzhen 518107, China |
引用本文:
庄钊涛, 严豪杰, 谢冰, 桂也, 孙擎擎, 伍廉奎, 曹发和. 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
Zhaotao ZHUANG,
Haojie YAN,
Bing XIE,
Ye GUI,
Qingqing SUN,
Liankui WU,
Fahe CAO.
High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1517-1527.
| [1] |
Wang Y P, Li S Y, Ma T F, et al. Improving high temperature oxidation resistance of TiAl alloy via hierarchical Ti5Si3-Ti2AlC precipitation strategy [J]. Corros. Sci., 2024, 228: 111834
|
| [2] |
Gong Z Q, Zhang H X, Sun W, et al. Research progress of TiAl-based alloys [J]. J. Mater. Sci. Eng., 2023, 41: 315
|
| [2] |
(宫子琪, 张慧星, 孙 伟 等. TiAl基合金研究现状及进展 [J]. 材料科学与工程学报, 2023, 41: 315)
|
| [3] |
Yan H J, Meng X Z, Zhuang Z T, et al. Effect of Ni in SiO2 coating on the oxidation resistance of TiAl alloy at 900 oC [J]. Appl. Surf. Sci., 2023, 638: 158054
|
| [4] |
Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
|
| [4] |
(严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81)
|
| [5] |
Liu X L, Sun H L, Jiang X S, et al. Isothermal oxidation behaviour of TiAl alloys prepared by spark plasma sintering with the addition of Gd under water vapour at 900 oC [J]. Intermetallics, 2023, 153: 107796
|
| [6] |
Huang F, Liang S C, Hu S X, et al. Status and progress in strengthening and toughening of TiAl alloy [J]. Spec. Cast. Nonferrous Alloy., 2023, 43: 1441
|
| [6] |
(黄 锋, 梁思诚, 胡尚兴 等. TiAl合金强韧化研究现状与进展 [J]. 特种铸造及有色合金, 2023, 43: 1441)
|
| [7] |
Li Y Q, Kou H C, Wang Y R, et al. Origin of surface oxidation induced the nucleation and propagation of microcracks in TNM alloy [J]. J. Mater. Sci. Technol., 2024, 202: 16
|
| [8] |
Sun C H, Li H R, Li L Y, et al. Enhanced corrosion resistance of Ti-Al-Mo alloy through solid state transformation driven by rapid solidification [J]. Corros. Commun., 2024, 16: 35
|
| [9] |
Liang H, Ding H S, Xu X S, et al. Effect of variation in Zr content on microstructure and high-temperature tensile properties of a γ-TiAl alloy [J]. Mater. Sci. Eng., 2024, 893A: 146085
|
| [10] |
Gao Z T, Hu R, Zou H, et al. Insight into the Ta alloying effects on the oxidation behavior and mechanism of cast TiAl alloy [J]. Mater. Design, 2024, 241: 112941
|
| [11] |
Sun T L, Guo Z C, Cao J, et al. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si [J]. Corros. Sci., 2023, 213: 110980
|
| [12] |
Bik M, Galetz M, Mengis L, et al. Oxidation behaviour of uncoated and PDC-SiAlOC glass-coated TiAl at 750 oC in dry and humid air [J]. Appl. Surf. Sci., 2023, 632: 157601
|
| [13] |
Li Y Y, Yan H J, Yin R Z, et al. The oxidation resistance of Ni nanoparticle incorporated SiOC coating for TiAl alloy [J]. Appl. Surf. Sci., 2025, 679: 161148
|
| [14] |
Li Y, Ma K, Xu J J, et al. Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy [J]. Corros. Sci., 2024, 226: 111696
|
| [15] |
Yang L L, Gao F Y, Zhou Z H, et al. Oxidation behavior of the AlN coatings on the TiAl alloy at 900 oC [J]. Corros. Sci., 2023, 211: 110891
|
| [16] |
Yan H J, Meng X Z, Zhang Q H, et al. High temperature oxidation performance of the electrodeposited SiO2 coating incorporated with Ni nanoparticle [J]. Corros. Sci., 2022, 205: 110455
|
| [17] |
Xu C, Zhu M H, Guan H H, et al. Improvement of steam oxidation resistance of the γ-TiAl alloy with microarc oxidation coatings at 900-1200 oC [J]. Corros. Sci., 2022, 209: 110711
|
| [18] |
Wu L L, Yin R Z, Chen Z X, et al. Preparation and high temperature oxidation resistance of Zr-SiO2 composite coating on Ti45Al8.5Nb alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1423
|
| [18] |
(吴亮亮, 殷若展, 陈朝旭 等. Ti45Al8.5Nb合金表面Zr-SiO2复合涂层的制备及其抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1423)
|
| [19] |
Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferr. Metal., 2010, 20: 1116
|
| [19] |
(彭小敏, 夏长清, 王志辉 等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116)
|
| [20] |
Tang G Z, Sun K W, Ma X X, et al. Effects of NH4F solution dipping treatment on high temperature oxidation behaviors of γ-TiAl alloy [J]. Chin. J. Nonferr. Metal., 2011, 21: 1535
|
| [20] |
(唐光泽, 孙科文, 马欣新 等. NH4F溶液化学处理对γ-TiAl抗高温氧化性能的影响 [J]. 中国有色金属学报, 2011, 21: 1535)
|
| [21] |
Wu L K, Bao Y T, Jiang M Y, et al. Insights into the surface pretreatment on the oxidation behavior of anodized TiAl alloy [J]. Corros. Sci., 2022, 207: 110571
|
| [22] |
Mu Y X, Sun D B, Wang Y S, et al. Isothermal oxidation and interfacial structure of Ti-45Al-8.5Nb alloy soaked by the NaF solution [J]. Mater. Lett., 2022, 318: 132146
|
| [23] |
Guo Y C, Liang Y F, Lin J P. In situ synthesis of nano/micron Ti2AlC reinforced high-Nb TiAl composites: Microstructure and mechanical properties [J]. Intermetallics, 2023, 159: 107937
|
| [24] |
Schütze M, Hald M. Improvement of the oxidation resistance of TiAl alloys by using the chlorine effect [J]. Mater. Sci. Eng., 1997, 239-240A: 847
|
| [25] |
Kumagai M, Shibue K, Kim M. Influence of minor elements on oxidation behavior of TiAl intermetallic compound. TiAl kinzoku kan kagobutsu no sanka tokusei ni oyobosu biryo genso no eikyo [J]. J. Japan Inst. Met., 1993, 57: 721
|
| [26] |
Kumagai M, Shibue K, Kim M S, et al. Influence of chlorine on the oxidation behavior of TiAl Mn intermetallic compound [J]. Intermetallics, 1996, 4: 557
|
| [27] |
Donchev A, Zschau H E, Schütze M. The halogen effect for improving the oxidation resistance of TiAl-alloys [J]. Mater. High Temp., 2005, 22: 309
|
| [28] |
Schumacher G, Dettenwanger F, Schütze M, et al. Microalloying effects in the oxidation of TiAl materials [J]. Intermetallics, 1999, 7: 1113
|
| [29] |
Yankov R A, Kolitsch A, von Borany J, et al. Microstructural studies of fluorine-implanted titanium aluminides for enhanced environmental durability [J]. Adv. Eng. Mater., 2014, 16: 52
|
| [30] |
Zhu Y C, Li X Y, Fujita K, et al. The improvement of the oxidation resistance of TiAl alloys by fluorine plasma-based ion implantation [J]. Surf. Coat. Technol., 2002, 158-159: 503
|
| [31] |
Zschau H E, Gauthier V, Schumacher G, et al. Investigation of the fluorine microalloying effect in the oxidation of TiAl at 900 oC in air [J]. Oxid. Met., 2003, 59: 183
|
| [32] |
Friedle S, Laska N, Braun R, et al. Oxidation behaviour of a fluorinated beta-stabilized γ-TiAl alloy with thermal barrier coatings in H2O-and SO2-containing atmospheres [J]. Corros. Sci., 2015, 92: 280
|
| [33] |
Donchev A, Galetz M, Schütze M, et al. Combination of Al‐enrichment and fluorination to enhance the environmental stability of Ti‐alloys at elevated temperatures [A]. VenkateshV, PilchakA L, AllisonJ E, et al. Proceedings of the 13th World Conference on Titanium [M]. Hoboken: Wiley, 2016
|
| [34] |
Yan H J, Xia J J, Wu L K, et al. Hot corrosion behavior of Ti45-Al8.5Nb alloy: Effect of anodization and pre-oxidation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1531
|
| [35] |
Li Z X, Liu Y H, Liu H J, et al. Effect of magnetron sputtered Al coating and anodization on the hot corrosion performance of Ti48Al2Nb2Cr alloy [J]. Mater. Today Commun., 2023, 36: 106524
|
| [36] |
Yang H T, Xu S H, Lan J J, et al. Effect of Rhenium addition on the high-temperature oxidation resistance of anodized γ-TiAl alloy [J]. J. Alloy. Compd., 2025, 1010: 178087
|
| [37] |
Bao Y T, Wang Y N, Zheng L, et al. Effect of the anodization on high tempreture oxidation behavior and mechanical properties of TiAl alloy [J]. J. Aeronaut. Mater., 2021, 41(2): 72
|
| [37] |
(包雅婷, 王亚楠, 郑 磊 等. 阳极氧化对TiAl合金高温氧化行为和力学性能的影响 [J]. 航空材料学报, 2021, 41(2): 72)
|
| [38] |
Wu L K, Xia J J, Jiang M Y, et al. Oxidation behavior of Ti45Al8.5-Nb alloy anodized in NH4F containing solution [J]. Corros. Sci., 2020, 166: 108447
|
| [39] |
Yan W, Wang J, Hu Q, et al. Approaching the theoretical capacity of TiO2 anode in a photo-rechargeable lithium-ion battery [J]. Nano Res., 2024, 17: 2655
|
| [40] |
Koudahi M F, Tovar A C P, Béguin F, et al. Charge storage and operando electrochemical dilatometry of MXene electrodes in ionic liquids [J]. Energy Storage Mater., 2024, 72: 103771
|
| [41] |
Lin X T, Wang Z K, Jiang X X, et al. Effect of Al2O3/SiO2 mass ratio on the structure and properties of medical neutral boroaluminosilicate glass based on XPS and infrared analysis [J]. Ceram. Int., 2023, 49: 38499
|
| [42] |
Gao K, Xing C F, Xu D C, et al. Aluminum halide‐based electron‐selective passivating contacts for crystalline silicon solar cells [J]. Small, 2024, 20: 2310352
|
| [43] |
Guo L, Yao X J, Wang Z C, et al. Hierarchically periodic macroporous niobium oxide architecture for enhanced hydrogen evolution [J]. Small, 2024, 20: 2310753
|
| [44] |
Zschau H E, Schütze M, Baumann H, et al. The quantitative role of surface doped fluorine for the improvement of oxidation resistance of TiAl in air [J]. Mater. Sci. Forum., 461-464: 505
|
| [45] |
Zeller A, Dettenwanger F, Schütze M. Influence of water vapour on the oxidation behaviour of titanium aluminides [J]. Intermetallics, 2002, 10: 59
|
| [46] |
Becker S, Rahmel A, Schorr M, et al. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys [J]. Oxid. Met., 1992, 38: 425
|
| [47] |
Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
|
| [48] |
Lang C, Schütze M. The initial stages in the oxidation of TiAl [J]. Mater. Corros., 1997, 48: 13
|
| [49] |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
| [50] |
Friedle S, Pflumm R, Seyeux A, et al. ToF-SIMS study on the initial stages of the halogen effect in the oxidation of TiAl alloys [J]. Oxid. Met., 2018, 89: 123
|
| [51] |
Schütze M, Schumacher G, Dettenwanger F, et al. The halogen effect in the oxidation of intermetallic titanium aluminides [J]. Corros. Sci., 2002, 44: 303
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|