Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1493-1507     CSTR: 32134.14.1005.4537.2025.026      DOI: 10.11902/1005.4537.2025.026
  综合评述 本期目录 | 过刊浏览 |
光响应多功能自修复涂层的研究进展
刘建阳, 韩扬, 于美燕, 王巍()
中国海洋大学材料科学与工程学院 青岛 266100
Recent Advances in Light-responsive Multifunctional Self-healing Coatings
LIU Jianyang, HAN Yang, YU Meiyan, WANG Wei()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

刘建阳, 韩扬, 于美燕, 王巍. 光响应多功能自修复涂层的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
Jianyang LIU, Yang HAN, Meiyan YU, Wei WANG. Recent Advances in Light-responsive Multifunctional Self-healing Coatings[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1493-1507.

全文: PDF(10465 KB)   HTML
摘要: 

金属腐蚀影响着国民经济的各个领域,对工业制造、环境保护等方面造成了严重威胁。为解决这些难题,光响应自修复涂层作为一种具有特殊功能的智能材料应运而生,它能够在光照条件下实现自我修复,从而恢复涂层的完整性和其他性能。光热自愈技术的精确性、快速响应性及众多优点表明了多种潜在的应用。本文全面概述了光响应自修复涂层的最新进展和挑战,包括自修复涂层的分类、光响应自修复的不同作用机理及在防腐、防冰、除冰和预警等领域的应用。最后,本文强调了一些尚未解决的关键挑战并讨论了该领域的未来发展方向。

关键词 防腐蚀保护自修复涂层光热响应多功能材料    
Abstract

Metal corrosion has caused significant losses to the national economy. Corrosion not only shortens the service life of industrial facilities but also poses potential threats to environmental safety. To address these challenges, light-responsive self-healing coatings, as a special functional smart material, have emerged. These coatings can self-repair under light irradiation, thereby restoring the integrity and other properties of the coating. Herein, the classification, mechanisms, and corrosion protection applications of multifunctional light-responsive self-healing coatings are reviewed, aiming to explore and address challenges in the field of corrosion protection, improve the safety and reliability of facilities, reduce maintenance frequency and costs, and provide new ideas and technical support for equipment protection in extreme environments. It discusses the latest domestic and international research achievements regarding the enhancement of corrosion resistance, anti-icing, and early warning performance of light-responsive self-healing coatings. It also analyzes in detail the influence of factors such as filler content, light wavelength, light intensity, and substrate type on the self-healing performance and corrosion resistance of the coatings. Finally, a series of optimization suggestions are proposed to address current issues such as high coating preparation costs and low photothermal conversion efficiency, and look forward to the broad application prospects of light-responsive self-healing coatings in corrosion protection of industrial equipment and pipelines, routine maintenance and fault prevention, adaptability to complex environments, and integration with new energy technologies.

Key wordscorrosion protection    self-healing coatings    photothermal response    multifunctional materials
收稿日期: 2025-01-17      32134.14.1005.4537.2025.026
ZTFLH:  TB430.50  
基金资助:国家自然科学基金(42476210)
通讯作者: 王巍,E-mail:wangwei8038@ouc.edu.cn,研究方向为海洋腐蚀防护、智能涂层的应用开发
Corresponding author: WANG Wei, E-mail: wangwei8038@ouc.edu.cn
作者简介: 刘建阳,男,2000年生,硕士生
图1  含动态二硒键和UPy基团的DSe-WSP聚合物的合成路线[13]和WPU-UxHy固化膜示意图[14]
图2  自修复过程中二硫键修复机理[15]和基于H-H和S-S键的聚合物网络的理想结构以及多个动态键的协同作用示意图[16]
图3  以单宁酸(TA)和桐油为内核、聚丙烯腈为外壳制备的纳米纤维[23]和以醋酸纤维素壳负载油酸(OA)和醇酸清漆树脂(AVR)制备的核壳纳米纤维的示意图[24]
图4  光热自修复涂层分类示意图
图5  TiN-BTA@mSiO2NPs/环氧树脂的光热响应自愈机制示意图[36],Fe3O4 MBT/环氧涂层的被动保护和自愈机制[37],多功能自愈材料PVB-Cu@TA核壳纳米纤维制备示意图[30],纤维素纳米纤维增强自愈水凝胶[38]
图6  f-PDAPs涂层的自修复机理[11]、DA反应在MXene薄膜刺激环氧涂层中的修复效果[46]、Co9S8@Bi2S3光热效应引发的动态二硫键和可逆氢键的重建[48]以及Zn2+-咪唑的金属配位键修复的示意图[50]
图7  基于1,4-苯醌二肟的自愈涂料的合成路线和示意图[51]与基于主客体相互作用的自愈涂层机理图[52]
MaterialsThe triggering conditionsRepair mechanismSelf- healing efficiencyCitation
TiN-BTA@mSiO2NPs / epoxy resinNear-infrared stimulationExogenous self-healingTrigger self-repair within 30 s[36]
Fe3O4 @MBT/epoxy resin coatingNear-infrared stimulationExogenous self-healingRepair cracks from 80 μm to 5 μm within 30 s[37]
PVB-Cu2O@TA/acrylic resinNear-infrared stimulationExogenous self-healingRepair cracks within 100 s[30]
Hydrogel reinforced by cellulose nanofibers doped with MXeneNear-infrared stimulationExogenous self-healingRepair cracks within 30 s[38]
f-PDAPs coatingNear-infrared stimulationDiels-AlderRepair efficiency of the coating reaches 93.1%[11]
MXene /epoxy resin coatingNear-infrared stimulationDiels-AlderRepair cracks within 30 s[46]
PPy-PUNear-infrared stimulationS-SRestore 65% of its original tensile strength[47]
Co9S8@Bi2S3-PUNear-infrared stimulationS-SAfter 5 cycles of cutting and healing, the self-healing efficiency is nearly 90%[48]
Epoxy self-healing coating(EPCN)HeatingDynamic imine bondCracks can be repaired in 8 minutes at 150 °C[49]
BDO-BQDO-TPUNear-infrared stimulationX-H···YBasic repair of cracks within 80 s[51]
Coating prepared based on Zn2+- imidazole metal coordination bondNear-infrared stimulationMetal coordination bondThe coating exhibits precise self-healing performance[50]
Cu2O@Ag-PDMSNear-infrared stimulationMetal coordination bondThe self-healing efficiency of the coating after 10 minutes can reach 97.8%[45]
Epoxy coating with β-cyclodextrin/graphene complexHeating/Near-infrared stimulationHost-guest interactionThe self-healing efficiency of the coating can reach 79.2%[52]
表1  不同修复机制的光热自修复涂层
图8  rGO@MS-BTA系列涂层转移电阻变化趋势示意图[53]和扫描电化学划痕|Z|扫描图像[54]
图9  CeO2系列涂层融冰时间的表征[55]和Bi2S3/Ti3C2T x 光响应自愈涂层融冰实验示意图[56]
图10  负载结晶紫内酯实现预警功能[57]和1,10-Phen实际预警情况示意图[58]
[1] Deeply cultivating the path of marine scientific research, overcoming difficulties to protect the blue oceans—A tribute to Duan jizhou, Director of the key laboratory of marine environmental corrosion and biofouling, Chinese academy of sciences [J]. Chin. Sci. Technol. Achi., 2024, 25(2): 40
[1] (深耕海洋科研路 攻坚克难守蔚蓝——记中国科学院海洋环境腐蚀与生物污损重点实验室主任段继周 [J]. 中国科技成果, 2024, 25(2): 40)
[2] Wang T, Wang W. Distribution of relaxation time of polydimethylsiloxane coatings during self-healing process [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 337
[2] (王 通, 王 巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究 [J]. 中国腐蚀与防护学报, 2023, 43: 337)
[3] Zhao S Q, Wang Y. Research on corrosion protection technology for marine engineering structures [J]. China Plant Eng., 2024, (9): 259
[3] (赵士桥, 王 宇. 海洋工程结构防腐蚀技术研究 [J]. 中国设备工程, 2024, (9): 259)
[4] Han D X, Ji W H, Wang T, et al. Water penetration behavior of epoxy coating based on distribution of relaxation time and finite element simulation [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 489
[4] (韩东晓, 纪文会, 王 通 等. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 489)
[5] Wang T, Gao K, Zhong S N, et al. Research progress on hydrophobic modification of polyurethane coatings [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 823
[5] (王 汀, 高 坤, 钟赛男 等. 聚氨酯涂层的疏水改性研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 823)
[6] Jiang B C, Lei Y H, Zhang Y L, et al. Research progress on application of functional superhydrophobic coatings for anti-icing in polar regions [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1
[6] (姜伯晨, 类延华, 张玉良 等. 功能性超疏水涂层在极地抗冰领域的应用研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1)
[7] Gao H D, Cui Y, Liu L, et al. Influence of simulated deep sea pressured-flowing seawater on failure behavior of epoxy glass flake coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 39
[7] (高浩东, 崔 宇, 刘 莉 等. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 39)
[8] Zhang Y, Fan W J, Zhang T F, et al. Review of intelligent self-healing coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 299
[8] (张 勇, 樊伟杰, 张泰峰 等. 涂层自修复技术研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 299)
[9] De Luna M S. Recent trends in waterborne and bio-based polyurethane coatings for corrosion protection [J]. Adv. Mater. Interfaces, 2022, 9: 2101775
[10] Ghomi E R, Neisiany R E, Khorasani S N, et al. Development of an epoxy self-healing coating through the incorporation of acrylic acid-co-acrylamide copolymeric gel [J]. Prog. Org. Coat., 2020, 149: 105948
[11] Yang S W, Du X S, Deng S, et al. Recyclable and self-healing polyurethane composites based on Diels-Alder reaction for efficient solar-to-thermal energy storage [J]. Chem. Eng. J., 2020, 398: 125654
[12] Yan X Z, Liu Z Y, Zhang Q H, et al. Quadruple H-bonding cross-linked supramolecular polymeric materials as substrates for stretchable, antitearing, and self-healable thin film electrodes [J]. J. Am. Chem. Soc., 2018, 140: 5280
[13] Fan W H, Jin Y, Shi L J, et al. Transparent, eco-friendly, super-tough “living” supramolecular polymers with fast room-temperature self-healability and reprocessability under visible light [J]. Polymer, 2020, 190: 122199
[14] Yang Y, Ye Z S, Liu X X, et al. A healable waterborne polyurethane synergistically cross-linked by hydrogen bonds and covalent bonds for composite conductors [J]. J. Mater. Chem., 2020, 8C: 5280
[15] Guo H S, Han Y, Zhao W Q, et al. Universally autonomous self-healing elastomer with high stretchability [J]. Nat. Commun., 2020, 11: 2037
[16] Huang H H, Zhou W, Zhong Z Y, et al. Self-antiglare waterborne coating with superior mechanical robustness and highly efficient room-temperature self-healing capability [J]. Prog. Org. Coat., 2020, 146: 105717
[17] Pan H, Li Y C, Zhang H, et al. In situ investigation of the healing process in dual-microcapsule self-healing materials by the synchrotron radiation computed tomography [J]. Compos. Part, 2022, 158A: 106955
[18] Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
[18] (陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 345)
[19] Malekkhouyan R, Neisiany R E, Khorasani S N, et al. The influence of size and healing content on the performance of extrinsic self‐healing coatings [J]. J. Appl. Polym. Sci., 2021, 138: 49964
[20] Luan C C, Yao X H, Zhang C, et al. Integrated self-monitoring and self-healing continuous carbon fiber reinforced thermoplastic structures using dual-material three-dimensional printing technology [J]. Compos. Sci. Technol., 2020, 188: 107986
[21] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409: 794
[22] Bleay S M, Loader C B, Hawyes V J, et al. A smart repair system for polymer matrix composites [J]. Compos. Part, 2001, 32A: 1767
[23] Wang Q, Wang W, Ji X H, et al. Self-healing coatings containing core-shell nanofibers with pH-responsive performance [J]. ACS Appl. Mater. Interfaces, 2021, 13: 3139
[24] Ji X H, Wang W, Zhao X, et al. Poly(dimethyl siloxane) anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers [J]. J. Mater. Sci. Technol., 2022, 101: 128
[25] Li C L, Zhao X Y, Meng C, et al. Application of hollow mesoporous organosilica nanoparticles as pH and redox double stimuli-responsive nanocontainer in the controlled release of corrosion inhibitor molecules [J]. Prog. Org. Coat., 2021, 159: 106437
[26] Song Y K, Chung C M. Repeatable self-healing of a microcapsule-type protective coating [J]. Polym. Chem., 2013, 4: 4940
[27] Jiang D, Xia X C, Hou J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy [J]. Chem. Eng. J., 2019, 373: 285
[28] Ye Y W, Chen H, Zou Y J, et al. Corrosion protective mechanism of smart graphene-based self-healing coating on carbon steel [J]. Corros. Sci., 2020, 174: 108825
[29] Ma Y Q, Zhang J X, Zhu G N, et al. Robust photothermal self-healing superhydrophobic coating based on carbon nanosphere/carbon nanotube composite [J]. Mater. Design, 2022, 221: 110897
[30] Cao L, Wang W, Li Q Y, et al. Three-dimensional nanofibers network multifunctional material for photothermal self-healing protective coating [J]. Chem. Eng. J., 2022, 440: 134943
[31] Xiang H P, Yin J F, Lin G H, et al. Photo-crosslinkable, self-healable and reprocessable rubbers [J]. Chem. Eng. J., 2019, 358: 878
[32] Zou Y T, Li L Y, Tan B, et al. Silane modified epoxy coatings with low surface tension to achieve self-healing of wide damages [J]. Prog. Org. Coat., 2019, 133: 357
[33] Cheng L, Liu C B, Zhao H C, et al. Photothermal-triggered shape memory coatings with active repairing and corrosion sensing properties [J]. J. Mater. Chem., 2021, 9A: 22509
[34] Ni X X, Li C X, Lei Y, et al. Design of a smart self-healing coating with multiple-responsive superhydrophobicity and its application in antibiofouling and antibacterial abilities [J]. ACS Appl. Mater. Interfaces, 2021, 13: 57864
[35] Feng H M, Wang T, Cao L, et al. Recent achievements and applications of photothermal self-healing coatings: a review [J]. Prog. Org. Coat., 2024, 187: 108153
[36] Ma L W, Wang J K, Zhang D W, et al. Dual-action self-healing protective coatings with photothermal responsive corrosion inhibitor nanocontainers [J]. Chem. Eng. J., 2021, 404: 127118
[37] Wang J K, Wu S H, Ma L W, et al. Corrosion resistant coating with passive protection and self-healing property based on Fe3O4-MBT nanoparticles [J]. Corros. Commun., 2022, 7: 1
[38] Xiong Y K, Fang Z Q, Tang P P, et al. MXene and cellulose nanofibers reinforced hydrogel with high strength and photothermal self-healing performances for marine antifouling [J]. Carbohydr. Polym., 2025, 348: 122879
[39] Chakma P, Konkolewicz D. Dynamic covalent bonds in polymeric materials [J]. Angew. Chem. Int. Ed., 2019, 58: 9682
[40] Mofijur M, Siddiki S Y A, Shuvho M B A, et al. Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources-a mini-review [J]. Chemosphere, 2021, 270: 128642
[41] Zhang Q Y, Duan J L, Guo Q Y, et al. Thermal-triggered dynamic disulfide bond self-heals inorganic perovskite solar cells [J]. Angew. Chem., 2022, 134: e202116632
[42] Wang J, Lai J C, Jia X Y. Highly stretchable and stretch-induced fluorescence chromism self-healing materials based on boroxine and dynamic imine bond [J]. J. Mater. Chem., 2022, 10C: 10895
[43] Sun C Y, Jia H Y, Lei K, et al. Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds [J]. Polymer, 2019, 160: 246
[44] Fan X, Yang X X, Wang S B, et al. Modified cellulose nanocrystals are used to enhance the performance of self-healing siloxane elastomers [J]. Carbohydr. Polym., 2021, 273: 118529
[45] Wang T, Wang W, Feng H M, et al. Photothermal nanofiller-based polydimethylsiloxane anticorrosion coating with multiple cyclic self-healing and long-term self-healing performance [J]. Chem. Eng. J., 2022, 446: 137077
[46] Zou Y T, Fang L, Chen T Q, et al. Near-infrared light and solar light activated self-healing epoxy coating having enhanced properties using MXene flakes as multifunctional fillers [J]. Polymers, 2018, 10: 474
[47] Shi B R, Wu H H, Sheng D K, et al. Near-infrared radiation and heat dual-induced self-healing polyurethane with anti-abrasion ability [J]. Prog. Org. Coat., 2022, 170: 106940
[48] Kang Q Q, Wang W, Wang T, et al. Self-healing protective coating with dual reversible bonds triggered by photothermal responsive Co9S8@Bi2S3 hollow core-shell nanofillers [J]. Prog. Org. Coat., 2023, 185: 107891
[49] Liu X H, Zhang E D, Liu J M, et al. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites [J]. Chem. Eng. J., 2023, 454: 139992
[50] Wang F, Wang W T, Zhang C, et al. Scalable manufactured bio-based polymer nanocomposite with instantaneous near-infrared light-actuated targeted shape memory and remote-controlled accurate self-healing [J]. Compos. Part, 2021, 219B: 108927
[51] Wang J, Lin X, Wang R G, et al. Self-healing, photothermal-responsive, and shape memory polyurethanes for enhanced mechanical properties of 3D/4D printed objects [J]. Adv. Funct. Mater., 2023, 33: 2211579
[52] Hu Z, Zhang D Y, Lu F, et al. Multistimuli-responsive intrinsic self-healing epoxy resin constructed by host-guest interactions [J]. Macromolecules, 2018, 51: 5294
[53] Huang Y, Wang P J, Tan W M, et al. Photothermal and pH dual-responsive self-healing coating for smart corrosion protection [J]. J. Mater. Sci. Technol., 2022, 107: 34
[54] Ji W H, Ji X H, Cao L, et al. Silver sulfide anchored bismuth molybdate p-n heterojunction nano-coating with excellent photo-thermal self-healing performance [J]. J. Colloid Interface Sci., 2024, 665: 109
[55] Song S J, Hu Y C, Liu Y, et al. Fabricating stable and self-healing superhydrophobic photothermal-responsive coating without modification towards effective anti-corrosion and anti-icing [J]. Appl. Surf. Sci., 2025, 685: 161980
[56] Du C T, Wang W, Guo Z H, et al. A robust anti-icing/de-icing and self-healing coating based on efficient photothermal Bi2S3/Ti3C2T x nanofillers [J]. Compos. Part, 2024, 274B: 111255
[57] Cheng L, Liu C B, Zhao H C, et al. Hierarchically self-reporting and self-healing photothermal responsive coatings towards smart corrosion protection [J]. Chem. Eng. J., 2023, 467: 143463
[58] Cao L, Wang Q, Wang W, et al. Synthesis of smart nanofiber coatings with autonomous self-warning and self-healing functions [J]. ACS Appl. Mater. Interfaces, 2022, 14: 27168
[1] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[2] 张正阳, 郭子新, 周欣, 孙海静, 孙杰. 纳米埃洛石装载苯并三氮唑自修复涂层研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.