Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (6): 1689-1697     CSTR: 32134.14.1005.4537.2025.047      DOI: 10.11902/1005.4537.2025.047
  研究报告 本期目录 | 过刊浏览 |
CO2 地层水环境温度变化对J55钢腐蚀行为的影响
赵彪1, 张永强2,3, 田会云1(), 逄昆1, 崔中雨1
1 中国海洋大学材料科学与工程学院 青岛 266404
2 陕西省二氧化碳封存与提高采收率重点实验室 西安 710065
3 陕西延长石油(集团)有限责任公司研究院 西安 710065
Effect of Temperature Variation on Corrosion Behavior of J55 Steel in an Artificial CO2-saturated Formation Water
ZHAO Biao1, ZHANG Yongqiang2,3, TIAN Huiyun1(), PANG Kun1, CUI Zhongyu1
1 School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China
2 Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery, Xi'an 710065, China
3 Shaanxi Yanchang Petroleum (Group) Limited Corperation Research Institute, Xi'an 710065, China
引用本文:

赵彪, 张永强, 田会云, 逄昆, 崔中雨. 含CO2 地层水环境温度变化对J55钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1689-1697.
Biao ZHAO, Yongqiang ZHANG, Huiyun TIAN, Kun PANG, Zhongyu CUI. Effect of Temperature Variation on Corrosion Behavior of J55 Steel in an Artificial CO2-saturated Formation Water[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1689-1697.

全文: PDF(21393 KB)   HTML
摘要: 

为了探究含CO2地层水环境下不同温度对油井管钢腐蚀行为的影响,对J55钢石油套管钢在含CO2溶液中浸泡10、30和50 d后的腐蚀性能进行了研究。结果表明,在不同温度下,随着浸泡时间的延长,J55钢腐蚀速率均呈现先降低后升高的趋势,其中在25 ℃时腐蚀速率最高,-20 ℃时最低。XRD结果显示,试样腐蚀产物主要由FeCO3组成,同时伴有Fe2O3α-FeOOH和γ-FeOOH。SEM结果显示,在常温条件下,不同浸泡时间的试样表面均覆盖一层疏松多孔的锈层,而低温条件下,试样表面附着腐蚀产物较少且多呈团聚状态。试样表面三维形貌分析表明,所有试样均表现出点蚀特征,不同温度下,随着浸泡时间的延长,蚀坑深度和最大体积均逐渐增加。

关键词 J55钢CO2腐蚀温度变化油田地层水    
Abstract

The influence of temperature on the corrosion behavior of J55 petroleum casing steel in an artificial CO2-containing formation water was studied by immersion test at 25, 0 and -20 oC for 10, 30, and 50 d respectively. The results indicate that the corrosion rate of J55 steel at different temperatures decreased in the initial stage and then increased with prolonged immersion time. The highest corrosion rate was observed at 25 oC, while the lowest occurred at -20 oC. XRD analysis revealed that the corrosion products on the steel consisted mainly of FeCO3, along with Fe2O3, α-FeOOH, and γ-FeOOH. SEM results showed that after corrosion at ambient temperature for different immersion periods, the steel surfaces were covered with a loose and porous rust layer after, whereas at low temperatures, fewer corrosion products adhered to the surface, mostly as agglomerated clusters. 3D surface topography analysis demonstrated that all the test steels exhibited pitting corrosion characteristics. Furthermore, with the increasing immersion time at different temperatures, both the depth and maximum volume of the corrosion pits progressively increased.

Key wordsJ55 steel    CO2 corrosion    temperature change    oilfield formation water
收稿日期: 2025-02-17      32134.14.1005.4537.2025.047
ZTFLH:  TG174  
基金资助:国家重点研发计划(2023YFB3710300);陕西省二氧化碳封存与提高采收率重点实验室开放课题(YJSYZX25SKF0019)
通讯作者: 田会云,E-mail:tianhuiyun@ouc.edu.cn,研究方向为海洋局部微环境中金属材料的腐蚀与防护
Corresponding author: TIAN Huiyun, E-mail: tianhuiyun@ouc.edu.cn
作者简介: 赵 彪,男,1998年生,硕士生
图1  J55钢显微组织形貌
图2  J55钢在地层水环境中不同温度下浸泡10、30和50 d的腐蚀失重与腐蚀速率
图3  J55钢在不同温度下地层水环境中腐蚀10、30和50 d后的宏观形貌
图4  J55钢在不同温度下地层水环境中腐蚀10、30和50 d后的腐蚀产物微观形貌
图5  J55钢在不同温度下地层水环境中腐蚀10、30和50 d除锈后的微观形貌
图6  J55钢在不同温度下地层水环境中腐蚀50 d后表面XRD谱图
图7  J55钢在不同温度下地层水环境中腐蚀10、30和50 d后表面蚀坑三维形貌图
图8  J55钢在不同温度下地层水环境中腐蚀10、30和50 d后表面蚀坑最大体积、点蚀最大深度以及点蚀平均深度
[1] Wang X Z, Yang H, Wang W, et al. Technical advancements in enhanced oil recovery in low permeability reservoirs of Yanchang oilfield [J]. Pet. Geol. Recovery Effic., 2022, 29(4): 69
[1] (王香增, 杨 红, 王 伟 等. 延长油田低渗透油藏提高采收率技术进展 [J]. 油气地质与采收率, 2022, 29(4): 69)
[2] Guo M L, Huang C X, Dong X G, et al. CO2 EOR mechanism of tight sandstone reservoir in Yanchang oilfield [J]. Chem. Eng. Oil Gas, 2018, 47(2): 75
[2] (郭茂雷, 黄春霞, 董小刚 等. 延长油田致密砂岩油藏CO2驱油机理研究 [J]. 石油与天然气化工, 2018, 47(2): 75)
[3] Abd El-Lateef H M, Abbasov V M, Aliyeva L I, et al. Corrosion protection of steel pipelines against CO2 corrosion-a review [J]. Chem. J., 2012, 2: 52
[4] Rajput A, Park J H, Hwan Noh S, et al. Fresh and sea water immersion corrosion testing on marine structural steel at low temperature [J]. Ships Offshore Struct., 2020, 15: 661
[5] Momber A W, Irmer M, Glück N. Performance characteristics of protective coatings under low-temperature offshore conditions. Part 1: Experimental set-up and corrosion protection performance [J]. Cold Reg. Sci. Technol., 2016, 127: 76
[6] Wang K, Wu L, Li Y Z, et al. Experimental study on low temperature fatigue performance of polar icebreaking ship steel [J]. Ocean Eng., 2020, 216: 107789
[7] Wang J G, Meng L H, Fan Z Z, et al. Study on CO2 corrosion of steel N80 and steel J55 in the downhole [J]. Contemp. Chem., 2019, 48: 929
[7] (王继刚, 孟丽慧, 范振忠 等. CO2对井下N80钢和J55钢的腐蚀研究 [J]. 当代化工, 2019, 48: 929)
[8] Zhao G X, Chen C F, Li J P, et al. Corrosion behavior of steel X52 in a simulated pipeline environment contatining CO2 [J]. Corros. Sci. Prot. Technol., 2001, 13: 236
[8] (赵国仙, 陈长风, 李建平 等. X52钢的CO2腐蚀行为 [J]. 腐蚀科学与防护技术, 2001, 13: 236)
[9] Li T, Gao K W, Lu M X. Formation mechanism of CO2 corrosion product scale on X65 steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 338
[9] (李 桐, 高克玮, 路民旭. X65钢CO2腐蚀产物膜形成机理 [J]. 中国腐蚀与防护学报, 2007, 27: 338)
[10] Xiang Y, Yuan Y, Zhou P, et al. Metal corrosion in carbon capture, utilization, and storage: Progress and challenges [J]. Strategic Study Chin. Acad. Eng., 2023, 25: 197
[10] (向 勇, 原 玉, 周 佩 等. 碳捕集利用与封存中的金属腐蚀问题研究: 进展与挑战 [J]. 中国工程科学, 2023, 25: 197)
[11] Ming N X, Wang Q S, He C, et al. Effect of temperature on corrosion behavior of X70 steel in an artificial CO2-containing formation water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 233
[11] (明男希, 王岐山, 何 川 等. 温度对X70钢在含CO2地层水中腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2021, 41: 233)
[12] Chen Y, He B, Bai X H. Laboratory experiment investigation on the effect of freezing and thawing cycle on the corrosion behavior of buried pipelines in saline soil [J]. Sci. Technol. Eng., 2018, 18(22): 312
[12] (陈 杨, 何 斌, 白晓红. 冻融循环对埋地管线在盐渍土中腐蚀行为影响的室内模拟试验研究 [J]. 科学技术与工程, 2018, 18(22): 312)
[13] Zhang W H, Yang S W, Guo J, et al. Influence of freezing-thawing on atmospheric corrosion of low alloy weathering steels [J]. Chin. J. Eng., 2010, 32: 883
[13] (张文华, 杨善武, 郭 佳 等. 冰冻/解冻对低合金耐候钢大气腐蚀的影响 [J]. 北京科技大学学报, 2010, 32: 883)
[14] Cheng S X, Zhao X H, Fu A Q, et al. Corrosion behavior of J55 and N80 carbon steels in simulated formation water under different CO2 partial pressures [J]. Coatings, 2022, 12: 1402
[15] Ren S, Wang X, Young D, et al. Impact of residual cementite on inhibition of CO2 corrosion of mild steel [J]. Corros. Sci., 2023, 222: 111382
[16] Xiao X M, Peng Y, Tian Z L. Effect of Cr and Mo contents on corrosion resistance and mechanical properties of weathering steel deposited metal [J]. Trans. China Weld. Inst., 2014, 35(6): 44
[16] (肖晓明, 彭 云, 田志凌. 铬、钼对耐候钢熔敷金属耐蚀性能和力学性能的影响 [J]. 焊接学报, 2014, 35(6): 44)
[17] Wang F P, Li X G. Influence of NaCl on corrosion behavior of API P105 steel in CO2 saturated solution [J]. J. Univ. Sci. Technol. Beijing, 2002, 24: 197
[17] (王凤平, 李晓刚. API P105油管钢在含CO2溶液中的电化学腐蚀行为 [J]. 北京科技大学学报, 2002, 24: 197)
[18] Lin G F, Bai Z Q, Zhao X W, et al. Effect of temperature on scales of carbon dioxide corrosion products [J]. Acta Petrol. Sin., 2004, 25(3): 101
[18] (林冠发, 白真权, 赵新伟 等. 温度对二氧化碳腐蚀产物膜形貌特征的影响 [J]. 石油学报, 2004, 25(3): 101)
[19] Zhou Y Z, Xin S Y, Lei X. Corrosion behavior of J55 casing in geothermal water environment [J]. China Petrol. Mach., 2017, 45(12): 106
[19] (周远喆, 信石玉, 类 歆. J55石油套管在地热水环境中腐蚀行为研究 [J]. 石油机械, 2017, 45(12): 106)
[20] Cao X W, Wang P S, Xu Z Y, et al. Study on the effects of pre-erosion initial structures on the CO2 corrosion behavior of X65 carbon steel [J]. Corros. Sci., 2024, 227: 111752
[21] Lu Q K, Wang L W, Xin J C, et al. Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization [J]. Constr. Build. Mater., 2020, 238: 117763
[22] Ding H X, Xiang Y, Lu W P, et al. Selective adsorption and corrosion mechanism of SO2 and its hydrates on X65 welded joints steel in CO2-saturated aqueous solution [J]. Corros. Sci., 2024, 238: 112373
[23] He L M, Zhang Q L, Chen W B, et al. Unraveling short-term O2 contamination on under deposit corrosion of X65 pipeline steel in CO2 saturated solution [J]. Corros. Sci., 2024, 233: 112113
[1] 张国庆, 余直霞, 王岳松, 王智, 金正宇, 刘宏伟. 海上超临界二氧化碳环境中含水率和温度对A106钢腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[2] 杨涛, 许磊, 王建春, 张明程, 姚彦博, 高国刚, 许文忠, 历长云. 油套管CO2 腐蚀和防护研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1134-1144.
[3] 欧阳嘉露, 王茜茜, 韩霞, 王子明. 油水交替环境中咪唑啉对CO2 腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 707-715.
[4] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[5] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[6] 朱烨森, 蔡锟, 胡葆文, 夏云秋, 胡涛勇, 黄一. 海底管道CO2 腐蚀特性及预测模型研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1225-1236.
[7] 潘鑫, 任泽, 连景宝, 何川, 郑平, 陈旭. 热处理工艺对超级13Cr不锈钢在饱和CO2油田地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[8] 赵国仙, 王映超, 张思琦, 宋洋. H2S/CO2对J55钢腐蚀的影响机制[J]. 中国腐蚀与防护学报, 2022, 42(5): 785-790.
[9] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[10] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[11] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[12] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[13] 韩帅豪,岑宏宇,陈振宇,邱于兵,郭兴蓬. 原油与高压CO2共存条件下咪唑啉缓蚀剂的作用行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[14] 赵桐, 赵景茂, 姜瑞景. 流速和碳链长度对咪唑啉衍生物在高压CO2环境中缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[15] 赵景茂 陈国浩. 咪唑啉与硫脲在CO2腐蚀体系中的
缓蚀协同作用机理
[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.