Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1277-1288     CSTR: 32134.14.1005.4537.2024.410      DOI: 10.11902/1005.4537.2024.410
  研究报告 本期目录 | 过刊浏览 |
钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响
刘鹏鹤1,2, 薛丽莉1, 许立坤2(), 辛永磊2, 郭明帅2, 周帅2, 段体岗2
1 哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
2 中国船舶集团公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode
LIU Penghe1,2, XUE Lili1, XU Likun2(), XIN Yonglei2, GUO Mingshuai2, ZHOU Shuai2, DUAN Tigang2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

刘鹏鹤, 薛丽莉, 许立坤, 辛永磊, 郭明帅, 周帅, 段体岗. 钛基体阴极充氢处理对RuO2-IrO2-TiO2 阳极微观结构和性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
Penghe LIU, Lili XUE, Likun XU, Yonglei XIN, Mingshuai GUO, Shuai ZHOU, Tigang DUAN. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1277-1288.

全文: PDF(12329 KB)   HTML
摘要: 

采用SEM、XRD等表面分析手段以及CV、EIS、动电位极化测试和强化电解加速寿命试验等电化学方法研究了钛基体阴极充氢对RuO2-IrO2-TiO2阳极微观结构和电化学性能的影响。结果表明,钛基体阴极充氢后表面形成了由TiH1.5和TiH2构成的氢化物层,降低了钛基体的耐蚀性。随着钛基体充氢电流密度的增加,氧化物阳极表面的粗裂纹逐渐增多,孔隙率增大,阳极的电化学活性表面积增大,析氯电催化活性增强,但阳极的电化学稳定性降低。当充氢电流密度继续增加到500 mA/cm2时,则发生相反的变化,氧化物阳极的电化学活性有所降低,而稳定性有所增强。

关键词 钛基体充氢氧化物阳极微观结构电化学性能    
Abstract

The anode of oxides-coated Ti-substrate plays an important role in the electro-chlorination system for biofouling prevention in seawater. The surface condition of Ti-substrate affects the performance of the anode. Herein, the effect of hydrogen pre-charging for the Ti-substrate on the microstructure and electrochemical properties of Ti/RuO2-IrO2-TiO2 anode was studied using surface analysis methods like SEM, XRD, and electrochemical techniques such as CV, EIS, potentiodynamic polarization measurement, and accelerated life test. The results show that a surface layer composed of hydrides of TiH1.5 and TiH2 is formed on the surface of Ti-substrate after being charged with hydrogen, which reduces the corrosion resistance of Ti substrate. As the current density for hydrogen charging increases, the oxide anode presents more large cracks while the porosity of the oxide coating increased, which enhances the electrochemically active surface area and electrocatalytic activity of the oxide anode for chlorine evolution reaction, but lowers the electrochemical stability of the anode. When the charging current density rises to 500 mA/cm2, on the contrary, the electrochemical activity of the oxide anode is decreased somewhat while the stability of the anode is improved to some extent.

Key wordstitanium substrate    hydrogen charging    oxide anode    microstructure    electrochemical properties
收稿日期: 2024-12-25      32134.14.1005.4537.2024.410
ZTFLH:  TG174  
基金资助:中国和克罗地亚科技合作委员会第十届例会交流项目(10-2)
通讯作者: 许立坤,E-mail:xulk@sunrui.net,研究方向为海洋腐蚀与防护
Corresponding author: XU Likun, E-mail: xulk@sunrui.net
作者简介: 刘鹏鹤,女,2000年生,硕士生
图1  钛基体经酸蚀以及在硫酸溶液中于不同电流密度阴极充氢4 h后的表面形貌
图2  钛基体经酸蚀以及在硫酸溶液中于不同电流密度阴极充氢后的XRD谱图
图3  未充氢和经不同电流密度充氢后的钛基体在3.5%NaCl溶液中的电化学阻抗谱
I / mA·cm-2Rs / Ω·cm2Qf / μΩ·cm2·S nn1Rf / kΩ·cm2Qct / µΩ·cm2·S nn2Rct / kΩ·cm2
Uncharged36.023.00.959623.030.882970
5034.030.50.9463.912.70.73150
10033.932.70.9214.813.70.71108
25033.536.30.888.0916.50.7491.1
50034.538.90.935.5117.30.7063.9
表1  未充氢和经不同电流密度充氢钛基体的EIS拟合参数
图4  未充氢和经不同电流密度充氢钛基体的动电位极化曲线
图5  钛基体经酸蚀以及不同电流密度阴极充氢后制备的RuO2-IrO2-TiO2阳极的表面形貌
图6  钛基体未充氢和经不同电流密度充氢后制备的RuO2-IrO2-TiO2阳极的XRD谱图
图7  钛基体未充氢和经不同电流密度充氢后制备的RuO2-IrO2-TiO2阳极在3.5%NaCl溶液中于1.20 V (vs. SCE)测量的电化学阻抗谱和拟合用等效电路图
I / mA·cm-2Rs / Ω·cm2Qdl / mΩ·cm2·SnnRct / Ω·cm2W / Ω·cm2
Uncharged32.979.250.7912.573.37
5031.0510.50.8110.251.84
10029.7710.90.807.152.20
25031.3619.30.744.041.49
50031.1615.00.774.341.51
表2  钛基体未充氢和经不同电流密度充氢后制备的氧化物阳极的EIS拟合参数
图8  钛基体未充氢和经不同电流密度充氢处理后制备的氧化物阳极在3.5%NaCl溶液中于不同扫速下的循环伏安曲线和0.7 V (vs. SCE)电位下的电流密度与扫描速率的关系曲线
I / mA·cm-2qtotal* / mC·cm-2qouter* / mC·cm-2qinner* / mC·cm-2ε
Uncharged16.659.307.350.44
5020.919.8111.100.53
10030.3412.1218.220.60
25035.4213.0522.370.63
50027.8712.9714.900.53
表3  钛基体未充氢和经不同电流密度充氢后制备的氧化物阳极的伏安电量参数和孔隙率
I / mA·cm-2Cdl / μF·cm-2φ
Uncharged5.310.133
505.750.144
1007.970.199
2508.270.207
5008.050.201
表4  钛基体未充氢和经不同电流密度充氢后制备的氧化物阳极的双电层电容和形貌因子
图9  钛基体未充氢和经不同电流密度充氢后制备的氧化物阳极在3.5%NaCl溶液中的动电位极化曲线
图10  钛基体未充氢和经不同电流密度充氢后制备的氧化物阳极在1 mol/L硫酸溶液中强化电解加速寿命测试(电流密度为1 A/cm2)时的槽压随时间的变化
[1] Xu L K, Sun M X. Electrochemical Protection Technology for Marine Ships [M]. Beijing: National Defense Industry Press, 2022
[1] 许立坤, 孙明先. 船舶电化学保护技术 [M]. 北京: 国防工业出版社, 2022
[2] Li C Y, Zhang G F, Fu H T. Development and application of electrolyzing seawater antifouling technique [J]. Dev. Appl. Mater., 1996, (1): 38
[2] 李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用 [J]. 材料开发与应用, 1996, (1): 38
[3] Trasatti S. Electrocatalysis: Understanding the success of DSA® [J]. Electrochim. Acta, 2000, 45: 2377
[4] Hine F, Yasuda M, Noda T, et al. Electrochemical behavior of the oxide-coated metal anodes [J]. J. Electrochem. Soc., 1979, 126: 1439
[5] Zhao F, Wang D W, Guo Q Z, et al. Performance study of RGO-CNTs hybrid material modified RuO2-IrO2-SnO2/Ti anode [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 787
[5] 赵 菲, 王东伟, 郭泉忠 等. RGO-CNTs杂化材料改性RuO2-IrO2-SnO2/Ti阳极的性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 787
[6] Pouladvand I, Asl S K, Hoseini M G, et al. Characterization and electrochemical behavior of Ti/TiO2-RuO2-IrO2-SnO2 anodes prepared by sol-gel process [J]. J. Sol-Gel. Sci. Technol., 2019, 89: 553
[7] Zeng Y, Chen K N, Wu W, et al. Effect of IrO2 loading on RuO2-IrO2-TiO2 anodes: A study of microstructure and working life for the chlorine evolution reaction [J]. Ceram. Int., 2007, 33: 1087
[8] Hoseinieh S M, Ashrafizadeh F, Maddahi M H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions [J]. J. Electrochem. Soc., 2010, 157: E50
[9] Kameyama K, Tsukada K, Yahikozawa K, et al. Surface characterization of RuO2‐IrO2‐TiO2 coated titanium electrodes [J]. J. Electrochem. Soc., 1994, 141: 643
[10] Takasu Y, Sugimoto W, Nishiki Y, et al. Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes [J]. J. Appl. Electrochem., 2010, 40: 1789
[11] Panić V, Dekanski A, Mišković-stanković V B, et al. On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure [J]. J. Electroanal. Chem., 2005, 579: 67
[12] Chu L Y, Xu L K, Wu L B, et al. Effect of oxalic acid etching on morphology and electrocatalytic activity of oxide anodes [J]. Acta Metall. Sin., 2005, 41: 763
[12] 初立英, 许立坤, 吴连波 等. 草酸浸蚀对氧化物阳极形貌及电催化性能的影响 [J]. 金属学报, 2005, 41: 763
[13] Baronetto D, Kodintsev I M, Trasatti S. Origin of ohmic losses at Co3O4/Ti electrodes [J]. J. Appl. Electrochem., 1994, 24: 189
[14] Shao D, Yan W, Li X L, et al. A highly stable Ti/TiH x /Sb-SnO2 anode: preparation, characterization and application [J]. Ind. Eng. Chem. Res., 2014, 53: 3898
[15] Wu S, Wang J L, Wang X B, et al. Mn3O4@C micro-flakes modified Ti/TiH2/β-PbO2 anode for accelerating oxygen evolution reaction in zinc electrowinning [J]. Mater. Res. Bull., 2024, 171: 112605
[16] Li J W, Li X C, Sui M L. Formation mechanism of hydride precipitation in commercially pure titanium [J]. J. Mater. Sci. Technol., 2021, 81: 108
doi: 10.1016/j.jmst.2021.01.009
[17] Wang Q Q, An X D, Zhu T, et al. Effect of electrochemical hydrogen charging on defect structure in titanium [J]. J. Alloy. Compd., 2021, 885: 160909
[18] Zhang W J, Yang F, Chen C P. Mechanical properties and hydrogen diffusion analysis of titanium alloy microstructure [J]. Dev. Appl. Mater., 2023, 38(3): 43
[18] 张文娟, 杨 帆, 陈超鹏. 钛合金微结构力学性能和氢扩散分析 [J]. 材料开发与应用, 2023, 38(3): 43
[19] Munirathinam B, Narayanan R, Neelakantan L. Electrochemical and semiconducting properties of thin passive film formed on titanium in chloride medium at various pH conditions [J]. Thin Solid Films, 2016, 598: 260
[20] Wu W, Liu J, Liu Z Y, et al. Surface characterization of the commercially pure titanium after hydrogen charging and its electrochemical characteristics in artificial seawater [J]. J. Electroanal. Chem., 2018, 822: 23
[21] Liu S P, Zhang Z, Xia J, et al. Effect of hydrogen precharging on mechanical and electrochemical properties of pure titanium [J]. Adv. Eng. Mater., 2020, 22: 1901182
[22] Peng W S, Xing S H, Qian Y, et al. Effect of flowing seawater on corrosion characteristics of passivation film on TA2 pure-Ti pipes [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1038
[22] 彭文山, 邢少华, 钱 峣 等. 流动海水冲刷下TA2纯钛管路钝化膜腐蚀特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1038
doi: 10.11902/1005.4537.2023.292
[23] Takasu Y, Onoue S, Kameyama K, et al. Preparation of ultrafine RuO2-IrO2-TiO2 oxide particles by a sol-gel process [J]. Electrochim. Acta, 1994, 39: 1993
[24] Ardizzone S, Trasatti S. Interfacial properties of oxides with technological impact in electrochemistry [J]. Adv. Colloid Interface Sci., 1996, 64: 173
[25] Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes [J]. Electrochim. Acta, 1990, 35: 263
[26] Silva J F, Dias A C, Araújo P, et al. Electrochemical cell design for the impedance studies of chlorine evolution at DSA® anodes [J]. Rev. Sci. Instrum., 2016, 87: 085113
[27] Wang X D, Xu Y F, Rao H S, et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution [J]. Energy Environ. Sci., 2016, 9: 1468
[1] 周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
[2] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[3] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[4] 裴海清, 肖竞博, 李微, 于昊玉, 温志勋, 岳珠峰. Al-O元素聚集对镍基单晶高温合金氧化影响的第一性原理研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[5] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[6] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[7] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[8] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[9] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[10] 王贞, 刘静, 张施琦, 黄峰. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[11] 王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[12] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[13] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[14] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[15] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.