Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1289-1299     CSTR: 32134.14.1005.4537.2024.390      DOI: 10.11902/1005.4537.2024.390
  研究报告 本期目录 | 过刊浏览 |
Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究
蔡科涛1,2, 季磊3, 张震3(), 冯强1,2, 邓伟林1,2, 兰贵红4, 何莎1,2, 赵占勇3, 白培康3
1 四川科特检测技术有限公司 广汉 618300
2 川庆钻探工程有限公司安全环保质量监督检测研究院 广汉 618300
3 中北大学材料科学与工程学院 太原 030051
4 西南石油大学化学化工学院 成都 610500
Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions
CAI Ketao1,2, JI Lei3, ZHANG Zhen3(), FENG Qiang1,2, DENG Weilin1,2, LAN Guihong4, HE Sha1,2, ZHAO Zhanyong3, BAI Peikang3
1 Sichuan Kete Testing Technology Co., Ltd., Guanghan 618300, China
2 Safety and Environmental Quality Supervision and Testing Institute of Chuanqing Drilling Engineering Co., Ltd., Guanghan 618300, China
3 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
4 School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
引用本文:

蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
Ketao CAI, Lei JI, Zhen ZHANG, Qiang FENG, Weilin DENG, Guihong LAN, Sha HE, Zhanyong ZHAO, Peikang BAI. Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1289-1299.

全文: PDF(15966 KB)   HTML
摘要: 

采用析氢测量、失重测试、阴极极化曲线、电化学阻抗谱和腐蚀形貌观察等方法研究Mg-Gd-Y-Zn-Zr合金在NaCl和Na2SO4溶液中的腐蚀行为。结果表明,Mg-Gd-Y-Zn-Zr合金在0.6 mol/L NaCl溶液中的腐蚀速率远高于0.6 mol/L Na2SO4溶液。在NaCl溶液中Mg-Gd-Y-Zn-Zr合金表面迅速形成针状氧化膜,随着浸泡进行氧化膜变厚,出现大量微裂纹;在Na2SO4溶液中Mg-Gd-Y-Zn-Zr合金浸泡初期氧化膜较薄,随着浸泡进行氧化膜呈絮状特征,腐蚀产物层观察到明显硫富集。腐蚀形貌结果显示,Mg-Gd-Y-Zn-Zr合金在NaCl溶液中α-Mg基体优先腐蚀,腐蚀较深,呈现局部腐蚀特征,而在Na2SO4溶液中第二相优先腐蚀,腐蚀较浅,腐蚀程度相对均匀。基于上述结果,从氧化膜形成和电偶腐蚀方面讨论了Cl-和SO42-对Mg-Gd-Y-Zn-Zr合金腐蚀行为的影响机制。

关键词 稀土镁合金腐蚀行为第二相氧化膜电偶腐蚀    
Abstract

The corrosion behavior of Mg-Gd-Y-Zn-Zr alloy in NaCl and Na2SO4 solutions was studied using hydrogen evolution measurement, mass loss measurement, cathodic polarization curve, electrochemical impedance spectroscopy and corrosion morphology observation. The results indicated that the corrosion rate of Mg-Gd-Y-Zn-Zr alloy in 0.6 mol/L NaCl solution was much higher than that in 0.6 mol/L Na2SO4 solution. A scale of needle-like oxides rapidly formed on the surface of Mg-Gd-Y-Zn-Zr alloy in NaCl solution. As immersion progressed, the oxide scale thickened and a large number of micro-cracks appeared. In the initial stage of Mg-Gd-Y-Zn-Zr alloy soaking in Na2SO4 solution, the oxide scale was relatively thin. With the increasing soaking time, the oxide scale exhibited a flocculent characteristic, and significant sulfur enrichment was observed in the corrosion products scale. The corrosion morphology observation showed that the α-Mg matrix of Mg-Gd-Y-Zn-Zr alloy was preferentially dissolved in NaCl solution with deeper and localized corrosion characteristics. In Na2SO4 solution, the second phase preferentially corroded with shallower and relatively uniform corrosion. Based on the above results, the influence mechanism of Cl- and SO42- on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy was discussed from the aspects of oxide scale formation and galvanic corrosion.

Key wordsrare-earth Mg alloy    corrosion behavior    second phase    oxide scale    galvanic corrosion
收稿日期: 2024-12-02      32134.14.1005.4537.2024.390
ZTFLH:  TG174  
基金资助:国家自然科学基金(52105409);山西省基础研究计划(20210302124042)
通讯作者: 张震,E-mail:zzhang14s@alum.imr.ac.cn,研究方向为增材制造金属材料腐蚀行为
Corresponding author: ZHANG Zhen, E-mail: zzhang14s@alum.imr.ac.cn
作者简介: 蔡科涛,男,1985年生,硕士生,高级工程师
图1  Mg-10Gd-4Y-2Zn-0.5Zr合金表面SEM形貌及EDS元素面扫结果
SampleMgGdYZnZr
Point 172.814.35.37.50.1
Point 280.69.33.96.10.1
Point 396.42.11.00.40.1
表1  图1中标记点处EDS成分分析结果 (atomic fraction / %)
图2  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡7 d时的析氢量、析氢速率和平均腐蚀速率
图3  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡不同时间后的阴极极化曲线
图4  Mg-10Gd-4Y-2Zn-0.5Zr合金在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中Icorr值随浸泡时间演变的柱状图
图5  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡不同时间的Nyquist图、Bode模值图和Bode相角图
图6  Mg-10Gd-4Y-2Zn-0.5Zr合金在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡时EIS的等效电路图
图7  Rp随浸泡时间的变化曲线
图8  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡不同时间后的表面形貌
图9  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡24 h后的截面腐蚀形貌及其EDS元素面扫图
图10  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡不同时间后的SEM表面形貌以及浸泡24 h后表面EDS元素面扫图
图11  Mg-10Gd-4Y-2Zn-0.5Zr合金分别在0.6 mol/L NaCl溶液和0.6 mol/L Na2SO4溶液中浸泡24 h后的截面腐蚀形貌
[1] Zhang J H, Zhang L, Leng Z, et al. Experimental study on strengthening of Mg-Li alloy by introducing long-period stacking ordered structure [J]. Scrip. Mater., 2013, 68: 675
[2] King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
[3] Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
[4] Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications [J]. Corros. Sci., 2014, 86: 1
[5] Li S X, Bacco A C, Birbilis N, et al. Passivation and potential fluctuation of Mg alloy AZ31B in alkaline environments [J]. Corros. Sci., 2016, 112: 596
[6] Yang Y, Peng X D, Wen H M, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy [J]. Mater. Sci. Eng., 2014, 611A: 1
[7] Chen J, Song Y W, Shan D Y, et al. In situ growth process of Mg-Al Hydrotalcite conversion film on AZ31 Mg alloy [J]. J. Mater. Sci. Technol., 2015, 31: 384
doi: 10.1016/j.jmst.2014.09.016
[8] Zhang C Y, Chen Y Y, Yu B X, et al. Effects of nucleation pretreatment on corrosion resistance of conversion coating on magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. Corros. Commun., 2023, 10: 69
[9] Yin Z, Chen Y, Yan H, et al. Effects of the second phases on corrosion resistance of AZ91-xGd alloys treated with ultrasonic vibration [J]. J. Alloy. Compd., 2019, 783: 877
[10] Xu K, Wang B J, Sun J. Research progress on the influence of anions in typical corrosive media on corrosion behavior of magnesium alloys [J]. Mater. Prot., 2022, 12: 166
[10] 许 凯, 王保杰, 孙 杰. 典型腐蚀介质中阴离子对镁合金腐蚀行为影响的研究进展 [J]. 材料保护, 2022, 12: 166
[11] Liu H G, Cao F Y, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35: 2003
doi: 10.1016/j.jmst.2019.05.001
[12] Zhao C, Cao F Y, Song G L. Corrosivity of haze constituents to pure Mg [J]. J. Magnes. Alloy., 2020, 8: 150
[13] Gu J X, Bai Z P, Li W F, et al. Chemical composition of PM2.5 during winter in Tianjin, China [J]. Particuology, 2011, 9: 215
[14] Ge F, Cui Z Y, Liu Y, et al. Influence of ammonium sulfate on the corrosion behavior of AZ31 magnesium alloy in chloride environment [J]. J. Magnes. Alloy., 2024, 12: 1082
[15] Yang L J, Wei Y H, Hou L F, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions [J]. Corros. Sci., 2010, 52: 345
[16] Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J]. J.Alloy. Compd., 2010, 496: 500
[17] Gururaj Acharya M, Nityananda Shetty A. The corrosion behavior of AZ31 alloy in chloride and sulfate media-a comparative study through electrochemical investigations [J]. J. Magnes. Alloy., 2019, 7: 98
doi: 10.1016/j.jma.2018.09.003
[18] Wang H X, Song Y W, Shan D Y, et al. Effects of corrosive media on the localized corrosion forms of Mg-3Zn alloy [J]. Corros. Commun., 2021, 2: 24
[19] Wu K G, Ito K, Enoki M. A comparative investigation of corrosion behavior and the concurrent acoustic emission of AZ31 Mg alloy under NaCl and Na2SO4 solution droplets [J]. Mater. Trans., 2024, 65: 587
[20] Feng B J, Liu G N, Yang P X, et al. Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution [J]. J. Magnes. Alloy., 2022, 10: 1598
[21] Chang F C, Song Y W, Dong K H, et al. Formation mechanisms of product film on high corrosion resistant EW75 Mg alloy: The effect of corrosive media [J]. Mater. Today Commun., 2025, 42: 111109
[22] Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
[22] 黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519
doi: 10.11902/1005.4537.2023.185
[23] Shi Z M, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corros. Sci., 2010, 52: 579
[24] Ding Z B, Zhao Y H, Lu R P, et al. Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys [J]. Trans. Nonferr. Met. Soc. China, 2019, 29: 722
[25] Zhang K, Wang C, Liu S, et al. New insights on corrosion behavior of aging precipitates in dilute Mg-Al-Ca alloy by experiments and first-principles calculations [J]. Corros. Sci., 2023, 220: 111254
[26] Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
[27] Wang L Q, Snihirova D, Deng M, et al. Revealing physical interpretation of time constants in electrochemical impedance spectra of Mg via Tribo-EIS measurements [J]. Electrochim. Acta, 2022, 404: 139582
[28] Zhang Z, Ji L, Wang S Y, et al. Revealing corrosion behavior and mechanism of cold metal transfer-wire arc additive manufactured Mg-10Gd-4Y-2Zn-0.5Zr alloy in 3.5 wt%NaCl [J]. Corros. Sci., 2024, 237: 112349
[29] Zhang Z, Wang L Q, Zhang R Z, et al. Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution [J]. J. Mater. Res. Technol., 2022, 18: 416
[30] Leleu S, Rives B, Bour J, et al. On the stability of the oxides film formed on a magnesium alloy containing rare-earth elements [J]. Electrochim. Acta, 2018, 290: 586
[31] Zhou W Q, Shan D Y, Han E H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 329
[32] Li C Q, Li X, Ke X T, et al. Enhancing corrosion resistance of Mg-Li-Zn-Y-Mn alloy containing long period stacking ordered (LPSO) structure through homogenization treatment [J]. Corros. Sci., 2024, 228: 111829
[33] Pérez P, Cabeza S, Garcés G, et al. Influence of long period stacking ordered phase arrangements on the corrosion behaviour of extruded Mg97Y2Zn1 alloy [J]. Corros. Sci., 2016, 107: 107
[34] Pinto R, Ferreira M G S, Carmezim M J, et al. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution [J]. Electrochim. Acta, 2011, 56: 1535
[35] Xie J S, Zhang Z, Dong H, et al. Insights into corrosion behavior of Mg alloys containing long-period stacking ordered structure in chloride and sulfate media [J]. Corros. Sci., 2025, 243: 112592
[36] Wang J, Li Y Y, Yuan Y, et al. Tailoring the corrosion behavior and mechanism of Mg-Gd-Zn alloys via Sc microalloying [J]. J. Mater. Res. Technol., 2023, 27: 5010
[1] 王芬玲, 尚丽梅, 张乃强, 朱忠亮. 超临界水环境中汽轮机阀门材料氧化特性研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1219-1232.
[2] 谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[3] 范世林, 杜娟, 杨少丹, 周延军, 宋克兴, 张国赏, 岳鹏飞, 杨冉, 王晓军. Cu-15Ni-8Sn合金在含S2-3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
[4] 方焕杰, 周鹏, 郁健浩, 王永欣, 于波, 蒲吉斌. Ti80合金与船用金属的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 905-915.
[5] 高云霞, 何琨, 张瑞谦, 梁雪, 王先平, 方前锋. 氧含量对国产FeCrAl基合金长周期腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1081-1088.
[6] 段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[7] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[8] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[9] 雷艾嘉, 戴训, 许江涛, 邓睿驹, 黄雪飞. Zr-1.35Sn-0.22Fe-0.13Cr-0.05Ni合金热处理工艺优化及其高温高压水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 497-505.
[10] 魏珂正, 蒋文龙, 龚奕维, 裘欣, 丁汉林, 项重辰, 王子健. 时效时间对锻态AZ80镁合金第二相析出及柱面取向表面腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[11] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[12] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[13] 乔泽, 李清泉, 刘晓航, 李燚周. 中性氯化钠溶液中硝酸根和电偶对7075-T651铝合金缝隙腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[14] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[15] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.