|
|
Mg-Gd-Y-Zn-Zr合金在NaCl和Na2SO4 溶液中腐蚀行为研究 |
蔡科涛1,2, 季磊3, 张震3( ), 冯强1,2, 邓伟林1,2, 兰贵红4, 何莎1,2, 赵占勇3, 白培康3 |
1 四川科特检测技术有限公司 广汉 618300 2 川庆钻探工程有限公司安全环保质量监督检测研究院 广汉 618300 3 中北大学材料科学与工程学院 太原 030051 4 西南石油大学化学化工学院 成都 610500 |
|
Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions |
CAI Ketao1,2, JI Lei3, ZHANG Zhen3( ), FENG Qiang1,2, DENG Weilin1,2, LAN Guihong4, HE Sha1,2, ZHAO Zhanyong3, BAI Peikang3 |
1 Sichuan Kete Testing Technology Co., Ltd., Guanghan 618300, China 2 Safety and Environmental Quality Supervision and Testing Institute of Chuanqing Drilling Engineering Co., Ltd., Guanghan 618300, China 3 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China 4 School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China |
引用本文:
蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaCl和Na2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
Ketao CAI,
Lei JI,
Zhen ZHANG,
Qiang FENG,
Weilin DENG,
Guihong LAN,
Sha HE,
Zhanyong ZHAO,
Peikang BAI.
Corrosion Behavior of Mg-Gd-Y-Zn-Zr Alloy in NaCl and Na2SO4 Solutions[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1289-1299.
[1] |
Zhang J H, Zhang L, Leng Z, et al. Experimental study on strengthening of Mg-Li alloy by introducing long-period stacking ordered structure [J]. Scrip. Mater., 2013, 68: 675
|
[2] |
King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
|
[3] |
Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
|
[4] |
Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications [J]. Corros. Sci., 2014, 86: 1
|
[5] |
Li S X, Bacco A C, Birbilis N, et al. Passivation and potential fluctuation of Mg alloy AZ31B in alkaline environments [J]. Corros. Sci., 2016, 112: 596
|
[6] |
Yang Y, Peng X D, Wen H M, et al. Microstructure and mechanical behavior of Mg-10Li-3Al-2.5Sr alloy [J]. Mater. Sci. Eng., 2014, 611A: 1
|
[7] |
Chen J, Song Y W, Shan D Y, et al. In situ growth process of Mg-Al Hydrotalcite conversion film on AZ31 Mg alloy [J]. J. Mater. Sci. Technol., 2015, 31: 384
doi: 10.1016/j.jmst.2014.09.016
|
[8] |
Zhang C Y, Chen Y Y, Yu B X, et al. Effects of nucleation pretreatment on corrosion resistance of conversion coating on magnesium alloy Mg-10Gd-3Y-0.4Zr [J]. Corros. Commun., 2023, 10: 69
|
[9] |
Yin Z, Chen Y, Yan H, et al. Effects of the second phases on corrosion resistance of AZ91-xGd alloys treated with ultrasonic vibration [J]. J. Alloy. Compd., 2019, 783: 877
|
[10] |
Xu K, Wang B J, Sun J. Research progress on the influence of anions in typical corrosive media on corrosion behavior of magnesium alloys [J]. Mater. Prot., 2022, 12: 166
|
[10] |
许 凯, 王保杰, 孙 杰. 典型腐蚀介质中阴离子对镁合金腐蚀行为影响的研究进展 [J]. 材料保护, 2022, 12: 166
|
[11] |
Liu H G, Cao F Y, Song G L, et al. Review of the atmospheric corrosion of magnesium alloys [J]. J. Mater. Sci. Technol., 2019, 35: 2003
doi: 10.1016/j.jmst.2019.05.001
|
[12] |
Zhao C, Cao F Y, Song G L. Corrosivity of haze constituents to pure Mg [J]. J. Magnes. Alloy., 2020, 8: 150
|
[13] |
Gu J X, Bai Z P, Li W F, et al. Chemical composition of PM2.5 during winter in Tianjin, China [J]. Particuology, 2011, 9: 215
|
[14] |
Ge F, Cui Z Y, Liu Y, et al. Influence of ammonium sulfate on the corrosion behavior of AZ31 magnesium alloy in chloride environment [J]. J. Magnes. Alloy., 2024, 12: 1082
|
[15] |
Yang L J, Wei Y H, Hou L F, et al. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions [J]. Corros. Sci., 2010, 52: 345
|
[16] |
Wang L, Shinohara T, Zhang B P. Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy [J]. J.Alloy. Compd., 2010, 496: 500
|
[17] |
Gururaj Acharya M, Nityananda Shetty A. The corrosion behavior of AZ31 alloy in chloride and sulfate media-a comparative study through electrochemical investigations [J]. J. Magnes. Alloy., 2019, 7: 98
doi: 10.1016/j.jma.2018.09.003
|
[18] |
Wang H X, Song Y W, Shan D Y, et al. Effects of corrosive media on the localized corrosion forms of Mg-3Zn alloy [J]. Corros. Commun., 2021, 2: 24
|
[19] |
Wu K G, Ito K, Enoki M. A comparative investigation of corrosion behavior and the concurrent acoustic emission of AZ31 Mg alloy under NaCl and Na2SO4 solution droplets [J]. Mater. Trans., 2024, 65: 587
|
[20] |
Feng B J, Liu G N, Yang P X, et al. Different role of second phase in the micro-galvanic corrosion of WE43 Mg alloy in NaCl and Na2SO4 solution [J]. J. Magnes. Alloy., 2022, 10: 1598
|
[21] |
Chang F C, Song Y W, Dong K H, et al. Formation mechanisms of product film on high corrosion resistant EW75 Mg alloy: The effect of corrosive media [J]. Mater. Today Commun., 2025, 42: 111109
|
[22] |
Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
|
[22] |
黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519
doi: 10.11902/1005.4537.2023.185
|
[23] |
Shi Z M, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corros. Sci., 2010, 52: 579
|
[24] |
Ding Z B, Zhao Y H, Lu R P, et al. Effect of Zn addition on microstructure and mechanical properties of cast Mg-Gd-Y-Zr alloys [J]. Trans. Nonferr. Met. Soc. China, 2019, 29: 722
|
[25] |
Zhang K, Wang C, Liu S, et al. New insights on corrosion behavior of aging precipitates in dilute Mg-Al-Ca alloy by experiments and first-principles calculations [J]. Corros. Sci., 2023, 220: 111254
|
[26] |
Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
|
[27] |
Wang L Q, Snihirova D, Deng M, et al. Revealing physical interpretation of time constants in electrochemical impedance spectra of Mg via Tribo-EIS measurements [J]. Electrochim. Acta, 2022, 404: 139582
|
[28] |
Zhang Z, Ji L, Wang S Y, et al. Revealing corrosion behavior and mechanism of cold metal transfer-wire arc additive manufactured Mg-10Gd-4Y-2Zn-0.5Zr alloy in 3.5 wt%NaCl [J]. Corros. Sci., 2024, 237: 112349
|
[29] |
Zhang Z, Wang L Q, Zhang R Z, et al. Effect of solution annealing on microstructures and corrosion behavior of wire and arc additive manufactured AZ91 magnesium alloy in sodium chloride solution [J]. J. Mater. Res. Technol., 2022, 18: 416
|
[30] |
Leleu S, Rives B, Bour J, et al. On the stability of the oxides film formed on a magnesium alloy containing rare-earth elements [J]. Electrochim. Acta, 2018, 290: 586
|
[31] |
Zhou W Q, Shan D Y, Han E H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 329
|
[32] |
Li C Q, Li X, Ke X T, et al. Enhancing corrosion resistance of Mg-Li-Zn-Y-Mn alloy containing long period stacking ordered (LPSO) structure through homogenization treatment [J]. Corros. Sci., 2024, 228: 111829
|
[33] |
Pérez P, Cabeza S, Garcés G, et al. Influence of long period stacking ordered phase arrangements on the corrosion behaviour of extruded Mg97Y2Zn1 alloy [J]. Corros. Sci., 2016, 107: 107
|
[34] |
Pinto R, Ferreira M G S, Carmezim M J, et al. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution [J]. Electrochim. Acta, 2011, 56: 1535
|
[35] |
Xie J S, Zhang Z, Dong H, et al. Insights into corrosion behavior of Mg alloys containing long-period stacking ordered structure in chloride and sulfate media [J]. Corros. Sci., 2025, 243: 112592
|
[36] |
Wang J, Li Y Y, Yuan Y, et al. Tailoring the corrosion behavior and mechanism of Mg-Gd-Zn alloys via Sc microalloying [J]. J. Mater. Res. Technol., 2023, 27: 5010
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|