Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (1): 155-163     CSTR: 32134.14.1005.4537.2024.186      DOI: 10.11902/1005.4537.2024.186
  研究报告 本期目录 | 过刊浏览 |
搪瓷涂层在600 ℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究
杨啸东1, 李雪2, 喻政2(), 杨莎莎2, 陈明辉2, 王福会2
1 国家国防科技工业局军工项目审核中心 北京 100039
2 东北大学腐蚀与防护中心 沈阳 110819
Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC
YANG Xiaodong1, LI Xue2, YU Zheng2(), YANG Shasha2, CHEN Minghui2, WANG Fuhui2
1 State Administration of Science, Technology and Industry for National Defence, Beijing 100039, China
2 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China
引用本文:

杨啸东, 李雪, 喻政, 杨莎莎, 陈明辉, 王福会. 搪瓷涂层在600 ℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.
Xiaodong YANG, Xue LI, Zheng YU, Shasha YANG, Minghui CHEN, Fuhui WANG. Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 155-163.

全文: PDF(8524 KB)   HTML
摘要: 

以T92钢为基体制备了助熔剂(Na2O、K2O和B2O3)不同质量分数B2O3 (11.78%、14.78%和17.78%)的3种搪瓷涂层,研究了它们在600 ℃熔融MgCl2-NaCl-KCl中的腐蚀行为。结果表明,涂层的腐蚀抗性随着B2O3含量的升高而升高。经500 h腐蚀后,B2O3含量为11.78%的搪瓷涂层在腐蚀性盐的物理溶解和化学侵蚀的共同作用下遭受了平均82.7 μm的厚度损失和14.44 mg/cm2的质量损失,涂层在内部不断生成的气态腐蚀产物的作用下由原始的82.7 ± 0.5 μm膨胀至253.9 ± 44.9 μm;提高B2O3含量至14.78%,涂层的厚度和质量损失降低至约12.5 μm和3.69 mg/cm2并且避免了因快速腐蚀而发生膨胀。17.78%B2O3含量的涂层腐蚀非常轻微,厚度损失小于1 μm,质量损失最终降低至仅为0.16 mg/cm2

关键词 搪瓷涂层T92钢腐蚀熔融氯盐    
Abstract

Three enamel coatings with identical total quantities of flux Na2O, K2O, and B2O3, but varying B2O3 mass fractions (11.78%, 14.78% and 17.78%) were prepared on on T92 ferritic steel. Their corrosion behaviorwas studied in molten salts MgCl2-NaCl-KCl at 600 oC in air. Results show that the corrosion severity of the enamel coatings gradually decreases with the increasing amount of B2O3 in enamels. After corrosion for 500 h, the enamel coating with the lowest mass fraction of B2O3 (11.78%) suffered from a thickness loss of about 82 μm and a mass loss of about 14.44 mg/cm2 under the combined action of physical dissolution and chemical attack of corrosive salts. Meanwhile, under the action of continuously generated gaseous corrosion products inside the coating, the coating was swelled, as a result, its thickness is expanded from 82.7 ± 0.5 μm of the original to 253.9 ± 44.9 μm. By increasing B2O3 content to 14.78%, the thickness- and mass-loss of the enamel coating were significantly reduced to about 12 μm and 3.69 mg/cm2 respectively, while the volume expansion caused by rapid corrosion is eliminated. Comparatively, the enamel coating with the highest mass fraction of B2O3 (17.78%) showed excellent corrosion resistance with a thickness loss of less than 1 μm, and mass loss is eventually reduced to only 0.16 mg/cm2.

Key wordsenamel coating    T92 steel    corrosion    melt chloride salts
收稿日期: 2024-06-17      32134.14.1005.4537.2024.186
ZTFLH:  TG17  
基金资助:兴辽英才项目(XLYC2203133);教育部中央高校基本科研业务费项目(N2302018);宁波余姚市科技创新项目
通讯作者: 喻政,E-mail:yuzheng_199501@163.com,研究方向为高温腐蚀与防护涂层
Corresponding author: YU Zheng, E-mail: yuzheng_199501@163.com
作者简介: 杨啸东,男,1994年生,工程师
EnamelSiO2SrOCaOAl2O3B2O3CoONa2OK2O
B12578.414.20511.7818.414.20
B15578.414.20514.7816.383.23
B18578.414.20517.7813.802.81
表1  3种搪瓷涂层的名义成分 (mass fraction / %)
图1  3种成分搪瓷粉末的DSC曲线及制备态搪瓷涂层的XRD谱
图2  搪瓷涂层制备态的截面和表面SEM像
图3  搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中热腐蚀500 h前后的宏观形貌
图4  搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中腐蚀500 h后的质量损失
图5  搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中腐蚀500 h后的XRD谱
图6  搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中腐蚀500 h后的表面SEM像
PositionOSiMgAlCaSrCoNaKCl
165.958.8520.461.180.430.9300.510.870.83
245.6730.719.412.262.583.010.352.622.251.15
357.2323.7710.742.671.062.140.210.651.140.39
463.4011.2622.280.860.250.770.010.350.300.50
553.7426.779.373.141.803.180.200.840.740.24
表2  图6中各区域的元素成分分析 (atomic fraction / %)
图7  搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中腐蚀500 h后的截面SEM像
图8  B15和B18搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中腐蚀500 h 后距原始表面不同深度处元素含量的EDS点分析结果变化曲线
图9  搪瓷涂层在600 ℃下MgCl2-KCl-NaCl熔盐中腐蚀500 h后的表面3D模型图
图10  搪瓷组分中相关反应方程式的热力学数据
图11  B12和B18搪瓷的热腐蚀过程示意图
1 Bonk A, Sau S, Uranga N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants [J]. Prog. Energy Combust. Sci., 2018, 67: 69
2 Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-a review [J]. Appl. Energy, 2015, 146: 383
3 Wu J J, Wang Y L. Hot corrosion and protection of structural materials in molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 193
3 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护 [J]. 中国腐蚀与防护学报, 2022, 42: 193
doi: 10.11902/1005.4537.2021.070
4 Bauer T, Pfleger N, Laing D, et al. High-temperature molten salts for solar power application [A]. LantelmeF, GroultH. Molten Salts Chemistry: From Lab to Applications [M]. Amsterdam: Elsevier, 2013: 415
5 Peiró G, Gasia J, Miró L, et al. Influence of the heat transfer fluid in a CSP plant molten salts charging process [J]. Renew. Energy, 2017, 113: 148
6 Villada C, Ding W J, Bonk A, et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: review on salt properties and corrosion control strategies [J]. Sol. Energy Mater. Sol. Cells, 2021, 232: 111344
7 Ding W J, Shi H, Jianu A, et al. Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials [J]. Sol. Energy Mater. Sol. Cells, 2019, 193: 298
8 Mohan G, Venkataraman M B, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600oC [J]. Renew. Sustain. Energy Rev., 2019, 107: 319
9 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Sol. Energy, 2018, 176: 350
10 Mohan G, Venkataraman M, Gomez-Vidal J, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage [J]. Energy Convers. Manage., 2018, 167: 156
11 Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties [J]. Mater. Sci. Eng., 2016, 664A: 58
12 Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
13 Zhang M Y, Ge J B, Yin, T Q, et al. Erratum—redox potential measurements of Cr(II)/Cr Ni(II)/Ni and Mg(II)/Mg in molten MgCl2-KCl-NaCl mixture [J. Electrochemi Soc., 167, 116505 (2020)] [J]. J. Electrochem. Soc., 2021, 168: 079001
14 Feng X K, Melendres C A. Anodic corrosion and passivation behavior of some metals in molten LiCl-KCl containing oxide ions [J]. J. Electrochem. Soc., 1982, 129: 1245
15 Zaikov Y P, Batukhtin V P, Shurov N I, et al. Calcium production by the electrolysis of molten CaCl2-part I. Interaction of calcium and copper-calcium alloy with electrolyte [J]. Metall. Mater. Trans., 2014, 45B: 961
16 Fernández A G, Cabeza L F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: thermal treatment assessment [J]. J. Energy Storage, 2020, 27: 101125
17 Grégoire B, Oskay C, Meißner T M, et al. Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part II: NaCl-KCl-MgCl2 ternary system [J]. Sol. Energy Mater. Sol. Cells, 2020, 216: 110675
18 Ding W J, Shi H, Xiu Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere [J]. Sol. Energy Mater. Sol. Cells, 2018, 184: 22
19 Yuan L, Xie X, Chen M H, et al. Air oxidation and NaCl corrosion behavior of 20 steel without and with enamel coating at 400 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 890
19 袁 磊, 谢 新, 陈明辉 等. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 890
20 Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
21 Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
22 Ullah F, Ameen M, Hasrat K. Experimental study on optimization of heat storage and melting salts of solar energy [J]. J. Food Process. Preserv., 2018, 43: e13685
23 Zuo Y, Cao M P, Shen M, et al. Effect of Mg on corrosion of 316H stainless steel in molten salts MgCl2-NaCl-KCl [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 80
23 左 勇, 曹明鹏, 申 淼 等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 80
24 Liu S J, Wang R D, Wang L, et al. Corrosion behavior of iron-based and Ni-based alloys melted in NaCl-MgCl2-KCl mixed molten salt under vacuum atmosphere [J]. J. Mater. Res. Technol., 2024, 28: 1915
25 Wang B, Cunning B V, Park S Y, et al. Graphene coatings as barrier layers to prevent the water-induced corrosion of silicate glass [J]. ACS Nano, 2016, 10: 9794
pmid: 27704789
26 Wang H, Zhang C, Jiang C Y, et al. Evaluation of glass coatings with various silica content corrosion in a 0.5 M HCl water solution [J]. Crystals, 2021, 11: 346
27 Zhan J, Chen G M, Zhang Q. Study on the corrosion mechanism of HVOF silicate glass coating in 36%HCl and 10 mol/L NaOH solution [J]. Optoelectron. Adv. Mater. Rapid Commun., 2010, 4: 1170
28 Zhang H, Zhang J J, Wang Z Q. Corrosion resistance of plasma-sprayed ceramic coatings doped with glass in different proportions [J]. J. Therm. Spray Technol., 2023, 32: 1286
29 Shao G X, Gou W B, Wen R C, et al. Enamel [M]. Beijing: China Light Industry Press, 1983: 360
29 邵规贤, 芶文彬, 闻瑞昌 等. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
30 Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O [J]. J. Anal. Appl. Pyrolysis, 2011, 91: 159
31 Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
32 Bunker B C. Molecular mechanisms for corrosion of silica and silicate glasses [J]. J. Non-Cryst. Solids, 1994, 179: 300
33 Gin S, Ribet I, Couillard M. Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions [J]. J. Nucl. Mater., 2001, 298: 1
[1] 任明泽, 董琳, 杨冠军. 环境障涂层材料及结构优化研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 33-45.
[2] 黄勤英, 李彧卓, 阳颖飞, 任盼, 王启伟. Pt改性共晶高熵合金AlCoCrFeNi2.1 热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] 赵立佳, 崔新宇, 王吉强, 熊天英. 冷喷涂B4C/Al复合涂层在硼酸溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(1): 164-172.
[4] 李晗晔, 张志超, 王群昌, 古岩, 陈泽浩, 杨莎莎, 梅飞强. 钛合金表面碱洗及水洗留痕形成机制与腐蚀过程控制[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[5] 王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
[6] 王粤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 夏思瑶. K444合金表面CVD渗铝涂层耐高温95%Na2SO4 + 5%NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[7] 张勇康, 翟海民, 李旭强, 李文生. Fe基非晶涂层在Na2SO4 + K2SO4Na2SO4 +NaCl混合盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[8] 马宏宇, 刘叡, 崔宇, 柯培玲, 刘莉, 王福会. 静水压力对Cr/GLC叠层涂层腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(1): 103-114.
[9] 梁玉伟, 王婕, 宋鹏, 黄太红, 包宇旭. FeCrMoSiB非晶涂层的耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 191-200.
[10] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[11] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[12] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[13] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[14] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[15] 王承涛, 申冠一, 许少毅, 李威, 王禹桥, 王树臣, 闻东东, 李朋宇. 基于物理场耦合的交流干扰作用下埋地金属管线腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.