|
|
搪瓷涂层在600 ℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究 |
杨啸东1, 李雪2, 喻政2( ), 杨莎莎2, 陈明辉2, 王福会2 |
1 国家国防科技工业局军工项目审核中心 北京 100039 2 东北大学腐蚀与防护中心 沈阳 110819 |
|
Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC |
YANG Xiaodong1, LI Xue2, YU Zheng2( ), YANG Shasha2, CHEN Minghui2, WANG Fuhui2 |
1 State Administration of Science, Technology and Industry for National Defence, Beijing 100039, China 2 Corrosion and Protection Center, Northeastern University, Shenyang 110819, China |
引用本文:
杨啸东, 李雪, 喻政, 杨莎莎, 陈明辉, 王福会. 搪瓷涂层在600 ℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.
Xiaodong YANG,
Xue LI,
Zheng YU,
Shasha YANG,
Minghui CHEN,
Fuhui WANG.
Corrosion Behavior of Enamel Coatings in Molten Salts MgCl2-KCl-NaCl at 600 oC[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 155-163.
1 |
Bonk A, Sau S, Uranga N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants [J]. Prog. Energy Combust. Sci., 2018, 67: 69
|
2 |
Vignarooban K, Xu X H, Arvay A, et al. Heat transfer fluids for concentrating solar power systems-a review [J]. Appl. Energy, 2015, 146: 383
|
3 |
Wu J J, Wang Y L. Hot corrosion and protection of structural materials in molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 193
|
3 |
吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护 [J]. 中国腐蚀与防护学报, 2022, 42: 193
doi: 10.11902/1005.4537.2021.070
|
4 |
Bauer T, Pfleger N, Laing D, et al. High-temperature molten salts for solar power application [A]. LantelmeF, GroultH. Molten Salts Chemistry: From Lab to Applications [M]. Amsterdam: Elsevier, 2013: 415
|
5 |
Peiró G, Gasia J, Miró L, et al. Influence of the heat transfer fluid in a CSP plant molten salts charging process [J]. Renew. Energy, 2017, 113: 148
|
6 |
Villada C, Ding W J, Bonk A, et al. Engineering molten MgCl2-KCl-NaCl salt for high-temperature thermal energy storage: review on salt properties and corrosion control strategies [J]. Sol. Energy Mater. Sol. Cells, 2021, 232: 111344
|
7 |
Ding W J, Shi H, Jianu A, et al. Molten chloride salts for next generation concentrated solar power plants: mitigation strategies against corrosion of structural materials [J]. Sol. Energy Mater. Sol. Cells, 2019, 193: 298
|
8 |
Mohan G, Venkataraman M B, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600oC [J]. Renew. Sustain. Energy Rev., 2019, 107: 319
|
9 |
Mohan G, Venkataraman M, Gomez-Vidal J, et al. Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides [J]. Sol. Energy, 2018, 176: 350
|
10 |
Mohan G, Venkataraman M, Gomez-Vidal J, et al. Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage [J]. Energy Convers. Manage., 2018, 167: 156
|
11 |
Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties [J]. Mater. Sci. Eng., 2016, 664A: 58
|
12 |
Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
|
13 |
Zhang M Y, Ge J B, Yin, T Q, et al. Erratum—redox potential measurements of Cr(II)/Cr Ni(II)/Ni and Mg(II)/Mg in molten MgCl2-KCl-NaCl mixture [J. Electrochemi Soc., 167, 116505 (2020)] [J]. J. Electrochem. Soc., 2021, 168: 079001
|
14 |
Feng X K, Melendres C A. Anodic corrosion and passivation behavior of some metals in molten LiCl-KCl containing oxide ions [J]. J. Electrochem. Soc., 1982, 129: 1245
|
15 |
Zaikov Y P, Batukhtin V P, Shurov N I, et al. Calcium production by the electrolysis of molten CaCl2-part I. Interaction of calcium and copper-calcium alloy with electrolyte [J]. Metall. Mater. Trans., 2014, 45B: 961
|
16 |
Fernández A G, Cabeza L F. Corrosion evaluation of eutectic chloride molten salt for new generation of CSP plants. Part 1: thermal treatment assessment [J]. J. Energy Storage, 2020, 27: 101125
|
17 |
Grégoire B, Oskay C, Meißner T M, et al. Corrosion mechanisms of ferritic-martensitic P91 steel and Inconel 600 nickel-based alloy in molten chlorides. Part II: NaCl-KCl-MgCl2 ternary system [J]. Sol. Energy Mater. Sol. Cells, 2020, 216: 110675
|
18 |
Ding W J, Shi H, Xiu Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere [J]. Sol. Energy Mater. Sol. Cells, 2018, 184: 22
|
19 |
Yuan L, Xie X, Chen M H, et al. Air oxidation and NaCl corrosion behavior of 20 steel without and with enamel coating at 400 oC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 890
|
19 |
袁 磊, 谢 新, 陈明辉 等. 20钢及其搪瓷涂层在400 ℃下的氧化和NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 890
|
20 |
Chen M H, Li W B, Shen M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: oxidation kinetics and microstructure [J]. Corros. Sci., 2013, 74: 178
|
21 |
Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: mechanisms [J]. Corros. Sci., 2014, 82: 316
|
22 |
Ullah F, Ameen M, Hasrat K. Experimental study on optimization of heat storage and melting salts of solar energy [J]. J. Food Process. Preserv., 2018, 43: e13685
|
23 |
Zuo Y, Cao M P, Shen M, et al. Effect of Mg on corrosion of 316H stainless steel in molten salts MgCl2-NaCl-KCl [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 80
|
23 |
左 勇, 曹明鹏, 申 淼 等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 80
|
24 |
Liu S J, Wang R D, Wang L, et al. Corrosion behavior of iron-based and Ni-based alloys melted in NaCl-MgCl2-KCl mixed molten salt under vacuum atmosphere [J]. J. Mater. Res. Technol., 2024, 28: 1915
|
25 |
Wang B, Cunning B V, Park S Y, et al. Graphene coatings as barrier layers to prevent the water-induced corrosion of silicate glass [J]. ACS Nano, 2016, 10: 9794
pmid: 27704789
|
26 |
Wang H, Zhang C, Jiang C Y, et al. Evaluation of glass coatings with various silica content corrosion in a 0.5 M HCl water solution [J]. Crystals, 2021, 11: 346
|
27 |
Zhan J, Chen G M, Zhang Q. Study on the corrosion mechanism of HVOF silicate glass coating in 36%HCl and 10 mol/L NaOH solution [J]. Optoelectron. Adv. Mater. Rapid Commun., 2010, 4: 1170
|
28 |
Zhang H, Zhang J J, Wang Z Q. Corrosion resistance of plasma-sprayed ceramic coatings doped with glass in different proportions [J]. J. Therm. Spray Technol., 2023, 32: 1286
|
29 |
Shao G X, Gou W B, Wen R C, et al. Enamel [M]. Beijing: China Light Industry Press, 1983: 360
|
29 |
邵规贤, 芶文彬, 闻瑞昌 等. 搪瓷学 [M]. 北京: 轻工业出版社, 1983: 360
|
30 |
Huang Q Z, Lu G M, Wang J, et al. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O [J]. J. Anal. Appl. Pyrolysis, 2011, 91: 159
|
31 |
Chen K, Chen M H, Yu Z D, et al. Simulating sulfuric acid dew point corrosion of enamels with different contents of silica [J]. Corros. Sci., 2017, 127: 201
|
32 |
Bunker B C. Molecular mechanisms for corrosion of silica and silicate glasses [J]. J. Non-Cryst. Solids, 1994, 179: 300
|
33 |
Gin S, Ribet I, Couillard M. Role and properties of the gel formed during nuclear glass alteration: importance of gel formation conditions [J]. J. Nucl. Mater., 2001, 298: 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|