|
|
航空发动机及燃气轮机热障涂层高温腐蚀与防护 |
王昆1,2, 邹兰欣1,2, 郭磊1,2( ), 闫凯3, 叶福兴1,2, 刘洪丽4, 郭洪波5( ) |
1 天津大学材料科学与工程学院 天津 300072 2 天津大学 现代连接技术重点实验室 天津 300072 3 中国特种设备检测研究院 北京 100029 4 中国民航大学航空工程学院 天津 300300 5 北京航空航天大学材料科学与工程学院 北京 100191 |
|
High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines |
WANG Kun1,2, ZOU Lanxin1,2, GUO Lei1,2( ), YAN Kai3, YE Fuxing1,2, LIU Hongli4, GUO Hongbo5( ) |
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China 2 Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China 3 China Special Equipment Inspection & Research Institute, Beijing 100029, China 4 College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China 5 School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
引用本文:
王昆, 邹兰欣, 郭磊, 闫凯, 叶福兴, 刘洪丽, 郭洪波. 航空发动机及燃气轮机热障涂层高温腐蚀与防护[J]. 中国腐蚀与防护学报, 2025, 45(1): 1-19.
Kun WANG,
Lanxin ZOU,
Lei GUO,
Kai YAN,
Fuxing YE,
Hongli LIU,
Hongbo GUO.
High-temperature Corrosion and Protection of Thermal Barrier Coatings for Aeroengines and Gas Turbines[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 1-19.
1 |
Zhao Y S, Zhang M, Dai J W, et al. Research progress of thermal barrier coatings for aeroengine turbine blades [J]. Mater. Rev., 2023, 37: 21040168
|
1 |
赵云松, 张 迈, 戴建伟 等. 航空发动机涡轮叶片热障涂层研究进展 [J]. 材料导报, 2023, 37: 21040168
|
2 |
Zhao J L, Yang L, Zhang C G, et al. Recent progress in thermal barrier coatings [J]. Adv. Ceram., 2020, 41: 148
|
2 |
赵娟利, 杨 岚, 张成冠 等. 热障涂层材料研究进展 [J]. 现代技术陶瓷, 2020, 41: 148
|
3 |
Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects [J]. Int. Mater. Rev., 2013, 58: 315
|
4 |
Kumar A, Nayak S K, Bijalwan P, et al. Optimization of mechanical and corrosion properties of plasma sprayed low-chromium containing Fe-based amorphous/nanocrystalline composite coating [J]. Surf. Coat. Technol., 2019, 370: 255
|
5 |
Lan Y L, Li J Q, Chen Q Z, et al. Mechanical properties and thermal conductivity of dense β-SiAlON ceramics fabricated by two-stage spark plasma sintering with Al2O3-AlN-Y2O3 additives [J]. J. Eur. Ceram. Soc., 2020, 40: 12
doi: 10.1016/j.jeurceramsoc.2019.09.013
|
6 |
Ustinov A I, Polishchuk S S, Demchenkov S A, et al. Formation of thin foils of high-entropy CrFeCoNiCu alloys by EB-PVD process [J]. Surf. Coat. Technol., 2020, 403: 126440
|
7 |
Li C Y, Guo H B, Gao L H, et al. Microstructures of yttria-stabilized zirconia coatings by plasma spray-physical vapor deposition [J]. J. Therm. Spray. Technol., 2015, 24: 534
|
8 |
Guo L, He W T, Chen W B, et al. Progress on high-temperature protective coatings for aero-engines [J]. Surf. Sci. Technol., 2023, 1: 6
|
9 |
Miller R A. Current status of thermal barrier coatings-an overview [J]. Surf. Coat. Technol., 1987, 30: 1
|
10 |
Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9): 18
|
10 |
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9): 18
|
11 |
Li M H, Sun X F, Zhang Z Y, et al. Oxidation and phase structure of the bond coat in EB-PVD thermal barrier coatings during thermal cycling [J]. Acta Metall. Sin., 2002, 38: 79
|
11 |
李美姮, 孙晓峰, 张重远 等. EB-PVD热障涂层热循环过程中粘结层的氧化和相结构 [J]. 金属学报, 2002, 38: 79
|
12 |
Borom M P, Johnson C A, Peluso L A. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings [J]. Surf. Coat. Technol., 1996, 86-87: 116
|
13 |
Wei Z Y, Meng G H, Chen L, et al. Progress in ceramic materials and structure design toward advanced thermal barrier coatings [J]. J. Adv. Ceram., 2022, 11: 985
|
14 |
Ozgurluk Y, Doleker K M, Ozkan D, et al. Cyclic hot corrosion failure behaviors of EB-PVD TBC systems in the presence of sulfate and vanadate molten salts [J]. Coatings, 2019, 9: 166
|
15 |
Sidhu T S, Agrawal R D, Prakash S. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review [J]. Surf. Coat. Technol., 2005, 198: 441
|
16 |
Smialek J L. The chemistry of Saudi Arabian sand: a deposition problem on helicopter turbine airfoils [A]. Gordon Conference on Corrosion [C]. New London, NASA, 1991
|
17 |
Kim J, Dunn M G, Baran A J, et al. Deposition of volcanic materials in the hot sections of two gas turbine engines [J]. J. Eng. Gas Turbines Power, 1993, 115: 641
|
18 |
Stott F H, de Wet D J, Taylor R. Degradation of thermal-barrier coatings at very high temperatures [J]. MRS Bull., 1994, 19: 46
|
19 |
Wiesner V L, Bansal N P. Crystallization kinetics of calcium-magnesium aluminosilicate (CMAS) glass [J]. Surf. Coat. Technol., 2014, 259: 608
|
20 |
Guo L, Xin H, Li Y Y, et al. Self-crystallization characteristics of calcium-magnesium-alumina-silicate (CMAS) glass under simulated conditions for thermal barrier coating applications [J]. J. Eur. Ceram. Soc., 2020, 40: 5683
|
21 |
Poerschke D L, Barth T L, Levi C G. Equilibrium relationships between thermal barrier oxides and silicate melts [J]. Acta Mater., 2016, 120: 302
|
22 |
Shi Y, Li B W, Zhao M, et al. Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent [J]. J. Am. Ceram. Soc., 2018, 101: 3968
|
23 |
Zhang B, Yu Y, Guo L, et al. Microstructure evolution of CMAS glass below melting temperature and its potential influence on thermal barrier coatings [J]. Ceram. Int., 2022, 48: 32877
|
24 |
Zhang X, Shan X, Withers P J, et al. Tracking the calcium-magnesium-alumino-silicate (CMAS) infiltration into an air-plasma spray thermal barrier coating using X-ray imaging [J]. Scr. Mater., 2020, 176: 94
|
25 |
Chevalier J, Gremillard L, Virkar A V, et al. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends [J]. J. Am. Ceram. Soc., 2009, 92: 1901
|
26 |
Krämer S, Faulhaber S, Chambers M, et al. Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration [J]. Mater. Sci. Eng., 2008, 490A: 26
|
27 |
Xu G N, Yang L, Zhou Y C. A coupled theory for deformation and phase transformation due to CMAS infiltration and corrosion of thermal barrier coatings [J]. Corros. Sci., 2021, 190: 109690
|
28 |
Li Y Y, Yu Y, Guo L, et al. Stress distribution around the reaction layer of CMAS and GdPO4 thermal barrier coatings based on finite element analysis [J]. Surf. Coat. Technol., 2022, 445: 128701
|
29 |
Hasz W C, Borom M P, Johnson C A. Protection of thermal barrier coating with an impermeable barrier coating [P]. USA Pat, 5871820, 1999
|
30 |
Hasz W C, Borom M P, Johnson C A. Protected thermal barrier coating composite with multiple coatings [P]. USA Pat, 6261643, 2001
|
31 |
Hasz W C, Johnson C A, Borom M P. Protection of thermal barrier coating by a sacrificial surface coating [P]. USA Pat, 5660885, 1997
|
32 |
Wang L, Guo L, Li Z M, et al. Protectiveness of Pt and Gd2Zr2O7 layers on EB-PVD YSZ thermal barrier coatings against calcium-magnesium-alumina-silicate (CMAS) attack [J]. Ceram. Int., 2015, 41: 11662
|
33 |
Wu H Q, Huo K, Ye F, et al. Wetting and spreading behavior of molten CMAS on the laser textured thermal barrier coatings with the assistance of Pt-modification [J]. Appl. Surf. Sci., 2023, 622: 156887
|
34 |
Rai A K, Bhattacharya R S, Wolfe D E, et al. CMAS-resistant thermal barrier coatings (TBC) [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 662
|
35 |
Zhang B P, Song W J, Wei L L, et al. Novel thermal barrier coatings repel and resist molten silicate deposits [J]. Scr. Mater., 2019, 163: 71
|
36 |
Guo L, Li G, Gan Z L. Effects of surface roughness on CMAS corrosion behavior for thermal barrier coating applications [J]. J. Adv. Ceram., 2021, 10: 472
|
37 |
Yang S J, Song W J, Dingwell D B, et al. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings [J]. Rare Met., 2022, 41: 469
|
38 |
Meng S J, Guo L, Guo H B, et al. CMAS-phobic and infiltration-inhibiting protective layer material for thermal barrier coatings [J]. J. Adv. Ceram., 2024, 13: 1254
|
39 |
Liu Y K, Fei Y J, Wang Z P, et al. Evaluation of mechanical properties of YSZ TBCs doped by different ratios of Eu3+ ions after isothermal oxidation [J]. Ceram. Int., 2022, 48: 18257
|
40 |
Fang H J, Wang W Z, Huang J B, et al. Corrosion behavior and thermos-physical properties of a promising Yb2O3 and Y2O3 co-stabilized ZrO2 ceramic for thermal barrier coatings subject to calcium-magnesium-aluminum-silicate (CMAS) deposition: experiments and first-principles calculation [J]. Corros. Sci., 2021, 182: 109230
|
41 |
Cao Z, An S L, Song X W. Effect of thermal treatment at high temperature on phase stability and transformation of Yb2O3 and Y2O3 co-doped ZrO2 ceramics [J]. Sci. Rep., 2022, 12: 9955
|
42 |
Dong Y S, Jiang Z C, Li J, et al. Effect of Sc2O3 doping on YSZ TBCs: morphologies, phase composition, mechanical properties, and high-temperature oxidation resistance [J]. Surf. Coat. Technol., 2023, 475: 130134
|
43 |
Fan W, Wang Z Z, Bai Y, et al. Improved properties of scandia and yttria co-doped zirconia as a potential thermal barrier material for high temperature applications [J]. J. Eur. Ceram. Soc., 2018, 38: 4502
|
44 |
Fan W, Bai Y, Liu Y F, et al. Corrosion behavior of Sc2O3-Y2O3 co-stabilized ZrO2 thermal barrier coatings with CMAS attack [J]. Ceram. Int., 2019, 45: 15763
doi: 10.1016/j.ceramint.2019.05.063
|
45 |
Su Q, Zhang Y Q, Li G F, et al. Doped effect of Gd and Y elements on corrosion resistance of ZrO2 in CMAS melt: first-principles and experimental study [J]. J. Eur. Ceram. Soc., 2021, 41: 7893
|
46 |
Wei X D, Zhao Z C, An Y L, et al. Effect of modulating the phase structure of YSZ ceramics by TiO2 doping on the CMAS corrosion resistance at 1250 oC [J]. Ceram. Int., 2023, 49: 14624
|
47 |
Kumar M, Dutta Majumdar J, Manna I. Development of Gd2O3 doped yttria stabilized zirconia based thermal barrier coating for improved high temperature oxidation and erosion resistance [J]. Ceram. Int., 2023, 49: 38081
|
48 |
Guo Y Q, He W T, Guo H B, et al. Thermo-physical and mechanical properties of Yb2O3 and Sc2O3 co-doped Gd2Zr2O7 ceramics [J]. Ceram. Int., 2020, 46: 18888
|
49 |
Liu L, Dong H Y, Zhang P, et al. Design and experimental investigation of potential low-thermal-conductivity high-entropy rare-earth zirconates [J]. J. Adv. Ceram., 2024, 13: 1132
|
50 |
Chen L, Feng J. Research progress of thermo-mechanical properties of rare earth tantalates RE3TaO7 and RETa3O9 ceramics [J]. Adv. Ceram., 2019, 40: 367
|
50 |
陈 琳, 冯 晶. 稀土钽酸盐RE3TaO7和RETa3O9陶瓷热-力学性质研究进展 [J]. 现代技术陶瓷, 2019, 40: 367
|
51 |
Wang R, Dong T S, Wang H D, et al. CMAS corrosion resistance in high temperature and rainwater environment of double-layer thermal barrier coatings odified by rare earth [J]. Ceram. Int., 2019, 45: 17409
doi: 10.1016/j.ceramint.2019.05.301
|
52 |
Yang L X. Study on high-temperature oxidation and CMAS corrosion properties of LZO/8YSZ double ceramic thermal barrier coatings [D]. Lanzhou: Lanzhou University of Technology, 2019
|
52 |
杨乐馨. LZO/8YSZ双陶瓷热障涂层高温氧化及CMAS腐蚀性能研究 [D]. 兰州: 兰州理工大学, 2019
|
53 |
Ozgurluk Y, Doleker K M, Ahlatci H, et al. Investigation of calcium-magnesium-alumino-silicate (CMAS) resistance and hot corrosion behavior of YSZ and La2Zr2O7/YSZ thermal barrier coatings (TBCs) produced with CGDS method [J]. Surf. Coat. Technol., 2021, 411: 126969
|
54 |
Sun S Y, Xue Z L, He W T, et al. Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J]. Ceram. Int., 2019, 45: 8138
|
55 |
Ozgurluk Y, Karaoglanli A C, Ahlatci H. Comparison of calcium-magnesium-alumina-silicate (CMAS) resistance behavior of produced with electron beam physical vapor deposition (EB-PVD) method YSZ and Gd2Zr2O7/YSZ thermal barrier coatings systems [J]. Vacuum, 2021, 194: 110576
|
56 |
Wang B, Jiang C Y, Wu Y T, et al. Effect of microstructure on CMAS corrosion behavior of (Gd0.8Yb0.2)2Zr2O7/YSZ thermal barrier coatings prepared by EB-PVD [J]. Corros. Sci., 2023, 223: 111477
|
57 |
Liu Q, Hu X P, Zhu W, et al. Thermal shock performance and failure behavior of Zr6Ta2O17-8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying [J]. Ceram. Int., 2022, 48: 24402
|
58 |
Tan Z Y, Yan G, Cao K, et al. Effect of microstructure on the performance of Zr6Ta2O17 ceramics as thermal barrier coatings [J]. Ceram. Int., 2023, 49: 29449
|
59 |
Dong H, Liang X H, Wang Z F, et al. Enhancing the performances of EB-PVD TBCs via overlayer Al-modification [J]. Surf. Coat. Technol., 2023, 473: 130001
|
60 |
Mohan P, Yao B, Patterson T, et al. Electrophoretically deposited alumina as protective overlay for thermal barrier coatings against CMAS degradation [J]. Surf. Coat. Technol., 2009, 204: 797
|
61 |
Guo Y Q, Wei L L, He Q, et al. PS-PVD alumina overlayer on thermal barrier coatings against CMAS attack [J]. J. Therm. Spray Technol., 2021, 30: 864
|
62 |
Guo L, Wang Y P, Liu M G, et al. CeO2 protective material against CMAS attack for thermal-environmental barrier coating applications [J]. Coatings, 2023, 13: 1119
|
63 |
Yan Z, Guo L, Zhang Z, et al. Versatility of potential protective layer material Ti2AlC on resisting CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 167: 108532
|
64 |
Guo L, Li Y Y, Li G. Design of Ti2AlC/YSZ TBCs for more efficient in resisting CMAS attack [J]. J. Adv. Ceram., 2023, 12: 1712
|
65 |
Guo L, Li G, Wu J, et al. Effects of pellet surface roughness and pre-oxidation temperature on CMAS corrosion behavior of Ti2AlC [J]. J. Adv. Ceram., 2022, 11: 945
|
66 |
Jing J, Li J M, He Z, et al. High-temperature CMAS resistance performance of Ti2AlC oxide scales [J]. Corros. Sci., 2020, 174: 108832
|
67 |
Guo L, Li G. Phase composition and fracture toughness of SiCw doped GdPO4 [J]. Adv. Ceram., 2020, 41: 186
|
67 |
郭 磊, 李 广. SiCw掺杂GdPO4的相组成和断裂韧性 [J]. 现代技术陶瓷, 2020, 41: 186
|
68 |
Wang F, Guo L, Wang C M, et al. Calcium-magnesium-alumina-silicate (CMAS) resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) thermal barrier oxides [J]. J. Eur. Ceram. Soc., 2017, 37: 289
|
69 |
Dong H Y, Liu L, Wang S K, et al. CMAS corrosion behavior of a LaPO4 ceramic prepared by spark plasma sintering [J]. J. Am. Ceram. Soc., 2023, 106: 5420
|
70 |
Guo L, Feng J Y, Liu M G, et al. Yb doping effects on CMAS corrosion resistance of Yb-doped GdPO4 by first-principles calculation and experimental investigation [J]. Corros. Sci., 2023, 218: 111175
|
71 |
Vassen R, Cao X Q, Tietz F, et al. Zirconates as new materials for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2000, 83: 2023
|
72 |
Lakiza S, Fabrichnaya O, Wang C, et al. Phase diagram of the ZrO2-Gd2O3-Al2O3 system [J]. J. Eur. Ceram. Soc., 2006, 26: 233
|
73 |
Krämer S, Yang J, Levi C G. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J]. J. Am. Ceram. Soc., 2008, 91: 576
|
74 |
Wang C M, Guo L, Ye F X. LaPO4 as a toughening agent for rare earth zirconate ceramics [J]. Mater. Des., 2016, 111: 389
|
75 |
Li M Z, Cheng Y X, Guo L, et al. Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance [J]. J. Eur. Ceram. Soc., 2017, 37: 3425
|
76 |
Drexler J M, Ortiz A L, Padture N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass [J]. Acta Mater., 2012, 60: 5437
|
77 |
Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides [J]. Nat. Commun., 2015, 6: 8485
doi: 10.1038/ncomms9485
pmid: 26415623
|
78 |
Li H T, Luo X W, Huang S, et al. Potential thermal barrier coating material: High entropy ceramic (Ca0.5Sr0.5)(5RE)2O4 with enhanced thermophysical properties [J]. Ceram. Int., 2023, 49: 39627
|
79 |
Zhao Z F, Chen H, Xiang H M, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3 [J]. J. Mater. Sci. Technol., 2019, 35: 2892
|
80 |
Zhu C Z, Wang H, Hu H S, et al. First principle study on high-entropy perovskites Ca(Ti0.25Zr0.25Hf0.25Sn0.25)O3 and Ca(Ti0.25Zr0.25-Hf0.25Ce0.25)O3 as thermal barrier coatings [J]. Mater. Chem. Phys., 2023, 297: 127460
|
81 |
Wang X Z, Guo L, Zhang H L, et al. Structural evolution and thermal conductivities of (Gd1- x Yb x )2Zr2O7 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramics for thermal barrier coatings [J]. Ceram. Int., 2015, 41: 12621
|
82 |
Sun L C, Luo Y X, Tian Z L, et al. High temperature corrosion of (Er0.25Tm0.25Yb0.25Lu0.25)2Si2O7 environmental barrier coating material subjected to water vapor and molten calcium-magnesium-aluminosilicate (CMAS) [J]. Corros. Sci., 2020, 175: 108881
|
83 |
Chen Z Y, Lin C C, Zheng W, et al. Investigation on improving corrosion resistance of rare earth pyrosilicates by high-entropy design with RE-doping [J]. Corros. Sci., 2022, 199: 110217
|
84 |
Ye F X, Meng F W, Luo T Y, et al. The CMAS corrosion behavior of high-entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 hafnate material prepared by ultrafast high-temperature sintering (UHS) [J]. J. Eur. Ceram. Soc., 2023, 43: 2185
|
85 |
Meng F W, Ye F X, Luo T Y. The high-temperature CMAS corrosion behavior of high-entropy (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Hf2O7 hafnate thermal barrier coating material with fluorite structure [J]. J. Eur. Ceram. Soc., 2024, 44: 2460
|
86 |
Lin G Q, Wang Y L, Yang L X, et al. CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials [J]. Corros. Sci., 2023, 224: 111529
|
87 |
Arshad A, Yajid M A M, Idris M H. Microstructural characterization of modified plasma spray LZ/YSZ thermal barrier coating by laser glazing [J]. Mater. Today: Proc., 2021, 39: 941
|
88 |
Fan Z J, Wang R J, Mei X S, et al. Microstructure evolution in yttria stabilized zirconia during laser hybrid induction modification [J]. J. Alloy. Compd., 2019, 810: 151898
|
89 |
Yan Z, Guo L, Li Z H, et al. Effects of laser glazing on CMAS corrosion behavior of Y2O3 stabilized ZrO2 thermal barrier coatings [J]. Corros. Sci., 2019, 157: 450
|
90 |
Guo L, Gao Y, Cheng Y X, et al. Microstructure design of the laser glazed layer on thermal barrier coatings and its effect on the CMAS corrosion [J]. Corros. Sci., 2021, 192: 109847
|
91 |
Miller R A. Analysis of the response of a thermal barrier coating to sodium- and vanadium-doped combustion gases [A]. Proceedings of the 8th Midwest High Temperature Chemistry Conference [C]. Milwaukee: NASA, 1979
|
92 |
Hamilton J C, Nagelberg A S. In situ Raman spectroscopic study of yttria-stabilized zirconia attack by molten sodium vanadate [J]. J. Am. Ceram. Soc., 1984, 67: 686
|
93 |
Laxton J W, Stevens C G, Tidy D. Deposition and blade fouling of gas turbines by fuel impurities and additives [A]. Proceedings of the Conference Held in High Temperature Alloys for Gas Turbines 1982 [C]. Liège, Belgium: Springer Netherlands, 1982: 149
|
94 |
Jones R L. Some aspects of the hot corrosion of thermal barrier coatings [J]. J. Therm. Spray Technol., 1997, 6: 77
|
95 |
Habibi M H, Wang L, Liang J D, et al. An investigation on hot corrosion behavior of YSZ-Ta2O5 in Na2SO4 + V2O5 salt at 1100 oC [J]. Corros. Sci., 2013, 75: 409
|
96 |
Zhou C H, Zhang Z Y, Zhang Q M, et al. Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings [J]. Mater. Corros., 2014, 65: 613
|
97 |
Susnitzky D W, Hertl W, Carter C B. Destabilization of zirconia thermal barriers in the presence of V2O5 [J]. J. Am. Ceram. Soc., 1988, 71: 992
|
98 |
Habibi M H, Wang L, Guo S M. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 oC [J]. J. Eur. Ceram. Soc., 2012, 32: 1635
|
99 |
Susnitzky D W, Hertl W, Carter C B. Vanadia-induced transformations in yttria-stabilized zirconia [J]. Ultramicroscopy, 1989, 30(1-2): 233
|
100 |
Jin X C, Fu S G, Li P, et al. Microstructures evolution, corrosion and oxidation mechanisms of EB-PVD thermal barrier coatings exposed to molten salt corrosion [J]. J. Eur. Ceram. Soc., 2024, 44(8): 5115
|
101 |
Huang H, Liu C, Ni L Y, et al. Evaluation of microstructural evolution of thermal barrier coatings exposed to Na2SO4 using impedance spectroscopy [J]. Corros. Sci., 2011, 53: 1369
|
102 |
Liu Z G, Ouyang J H, Zhou Y, et al. Densification, structure, and thermophysical properties of ytterbium-gadolinium zirconate ceramics [J]. Int. J. Appl. Ceram. Technol., 2009, 6: 485
|
103 |
Xu Q, Pan W, Wang J D, et al. Rare-earth zirconate ceramics with fluorite structure for thermal barrier coatings [J]. J. Am. Ceram. Soc., 2006, 89: 340
|
104 |
Wu Y, Bai Z M, Zheng L, et al. Hot corrosion behavior of NdYb-Zr2O7 exposed to V2O5 and Na2SO4+V2O5 molten salts [J]. Ceram. Int., 2020, 46: 8543
|
105 |
Bahamirian M, Hadavi S M M, Farvizi M, et al. Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating [J]. Surf. Coat. Technol., 2019, 360: 1
|
106 |
Yang P, Bu Z Y, An Y L, et al. Hot corrosion product and corrosion layer evolution of La2(Zr0.75Ce0.25)2O7 coating exposed to vanadate-sulfate salts at 1050 oC [J]. Ceram. Int., 2022, 48: 13014
|
107 |
Xu Z H, He L M, Mu R D, et al. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings [J]. Surf. Coat. Technol., 2010, 204: 3652
|
108 |
Guo L, Li M Z, He S X, et al. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings [J]. J. Alloy. Compd., 2017, 698: 13
|
109 |
Guo L, Zhang C L, He Q, et al. Corrosion products evolution and hot corrosion mechanisms of REPO4 (RE = Gd, Nd, La) in the presence of V2O5 + Na2SO4 molten salt [J]. J. Eur. Ceram. Soc., 2019, 39: 1496
|
110 |
Li M Z, Cheng Y X, Guo L, et al. Preparation of plasma sprayed nanostructured GdPO4 thermal barrier coating and its hot corrosion behavior in molten salts [J]. Ceram. Int., 2017, 43: 7797
|
111 |
Bahamirian M, Hadavi S M M, Farvizi M, et al. Phase stability of ZrO29.5Y2O35.6Yb2O35.2Gd2O3 compound at 1100 oC and 1300 oC for advanced TBC applications [J]. Ceram. Int., 2019, 45: 7344
doi: 10.1016/j.ceramint.2019.01.018
|
112 |
Bahamirian M, Hadavi S M M, Farvizi M, et al. ZrO29.5Y2O35.6-Yb2O35.2Gd2O3; a promising TBC material with high resistance to hot corrosion [J]. J. Asian Ceram. Soc., 2020, 8: 898
doi: 10.1080/21870764.2020.1793474
|
113 |
Li Y, She Y J, Liao K. Hot-corrosion behavior of Gd2O3-Yb2O3 Co-doped YSZ thermal barrier coatings in the presence of V2O5 molten salt [J]. Coatings, 2023, 13: 886
|
114 |
Liu D C, Jing Y Z, Cui X F, et al. Phase evolution and hot corrosion behavior of Yb2O3 and CeO2 co-doping YSZ ceramics under high temperature [J]. Ceram. Int., 2023, 49: 34025
|
115 |
Stöver D, Pracht G, Lehmann H, et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings [J]. J. Therm. Spray Technol., 2004, 13: 76
|
116 |
Rahnavard M, Ostad Ahmad Ghorabi M J, Rafiee H. Comparison of hot corrosion behaviour of FGM and usual TBCs [J]. Surf. Eng., 2017, 33: 444
|
117 |
Sezavar A, Sajjadi S A, Babakhani A, et al. Hot corrosion behavior of micro- and nanostructured thermal barrier coatings: conventional bilayer and compositionally graded layer YSZ [J]. Oxid. Met., 2021, 96: 469
doi: 10.1007/s11085-021-10058-3
|
118 |
Vakilifard H, Ghasemi R, Rahimipour M. Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na2SO4 + V2O5 molten salt [J]. Surf. Coat. Technol., 2017, 326: 238
|
119 |
Tsai P C, Lee J H, Hsu C S. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5 [J]. Surf. Coat. Technol., 2007, 201: 5143
|
120 |
Batista C, Portinha A, Ribeiro R M, et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts [J]. Surf. Coat. Technol., 2006, 200: 6783
|
121 |
Guo L, Xin H, Zhang Z, et al. Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance [J]. J. Adv. Ceram., 2020, 9: 232
|
122 |
Yang Z G, Liang W P, Miao Q, et al. Hot corrosion behaviors of as-sprayed and laser-remelted YSZ thermal barrier coatings at 950 oC [J]. Matéria, 2022, 27(3): e20220052
|
123 |
Afrasiabi A, Saremi M, Kobayashi A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3 [J]. Mater. Sci. Eng., 2008, 478A: 264
|
124 |
Soleimanipour Z, Baghshahi S, Shoja-Razavi R, et al. Hot corrosion behavior of Al2O3 laser clad plasma sprayed YSZ thermal barrier coatings [J]. Ceram. Int., 2016, 42: 17698
|
125 |
Vagge S T, Pahurkar Atul B, Ghogare S B. Synthesis and processing of thermal barrier coatings with the use of YSZ, LTA and LTA/YSZ [J]. Mater. Today: Proc., 2022, 48: 1680
|
126 |
Xie X Y, Guo H B, Gong S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings [J]. Chin. J. Aeronaut., 2012, 25: 137
|
127 |
Chen T, Sun J B, Song C X, et al. Hot corrosion behavior of Y3Al5O12/LaPO4 materials exposed to molten V2O5 [J]. Ceram. Int., 2022, 48: 14856
|
128 |
Soltani P, Keyvani A, Bahamirian M. Evolution of hot corrosion resistance of conventional CSZ and MoSi2 self-healing thermal barrier coatings in Na2SO4 + V2O5 at 950 oC [J]. Ceram. Int., 2022, 48: 9038
|
129 |
Xiang Y, Yan K, Yu H Y, et al. Comparative investigation on the hot corrosion failure of YSZ and GdYb-YSZ double-ceramic-layer thermal barrier coatings under Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2023, 49: 18678
|
130 |
Shifler D A, Choi S R. CMAS effects on ship gas-turbine components/materials [A]. Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition [C]. Oslo, Norway, 2018
|
131 |
Zhang X M, Yu Y, Sun J Y, et al. Crystallization behavior of CMAS and NaVO3 + CMAS mixture and its potential effect to thermal barrier coatings corrosion [J]. Ceram. Int., 2021, 47: 31868
|
132 |
Zhang X M, Xin H, Guo L. Crystallization behavior of calcium-magnesium-alumina-silicate coupled with NaCl/Na2SO4 [J]. Corros. Commun., 2023, 10: 1
|
133 |
Guo L, Zhang X M, Xin H. Corrosiveness of CMAS and CMAS+salt (NaVO3, Na2SO4 and NaCl) to YSZ thermal barrier coating materials [J]. Corros. Sci., 2022, 209: 110738
|
134 |
Li Y Y, Yu Y, Loghman Estarki M R, et al. Crystallization behavior of CMAS + sea salt mixture and its effect on the mixture penetration into thermal barrier coatings [J]. Surf. Coat. Technol., 2023, 473: 130012
|
135 |
Guo L, Xin H, Hu C W. Comparison of NaVO3 + CMAS mixture and CMAS corrosion to thermal barrier coatings [J]. Corros. Sci., 2020, 177: 108968
|
136 |
Zhang Y G, Han J S, Wu D T, et al. Corrosion behavior of CMAS coupling NaVO3 salt for plasma-sprayed Al2O3/YSZ thermal barrier coatings [J]. Corros. Sci., 2023, 221: 111369
|
137 |
Kumar R, Rommel S, Jiang C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures [J]. Surf. Coat. Technol., 2022, 423: 128039
|
138 |
Fang H J, Zhou P, Wang Y X, et al. Research on aggressiveness of CMAS + NaVO3 mixtures towards thermal barrier coatings from the perspective of physical and chemical characteristics [J]. Corros. Sci., 2023, 223: 111463
|
139 |
Guo L, Zhang X M, Liu M G, et al. CMAS + sea salt corrosion to thermal barrier coatings [J]. Corros. Sci., 2023, 218: 111172
|
140 |
Das S, Madheshiya A, Ghosh M, et al. Structural, optical, and nuclear magnetic resonance studies of V2O5-doped lead calcium titanate borosilicate glasses [J]. J. Phys. Chem. Solids, 2019, 126: 17
|
141 |
Guo L, Feng J Y, Meng S J. Corrosion resistance of GdPO4 thermal barrier coating candidate in the presence of CMAS + NaVO3 and CMAS [J]. Corros. Sci., 2022, 208: 110628
|
142 |
Li B W, Wu J, He X B, et al. Sc-doped Gd2Zr2O7 coating on YSZ thermal barrier coatings to resist CMAS + molten salt attack [J]. Ceram. Int., 2022, 48: 11662
|
143 |
Wu J, Gao Y, Guo C A, et al. Laser surface modification to improve the resistance of CMAS + molten salt coupling corrosion to thermal barrier coatings [J]. Ceram. Int., 2023, 49: 32282
|
144 |
Batista C, Portinha A, Ribeiro R M, et al. Surface laser-glazing of plasma-sprayed thermal barrier coatings [J]. Appl. Surf. Sci., 2005, 247: 313
|
145 |
Zhang Y G, Dou M F, Gao W, et al. Wetting kinetics and corrosion of CMAS and CMAS-NaCl to plasma-sprayed YSZ and Al2O3-YSZ thermal barrier coatings [J]. Corros. Sci., 2024, 232: 112048
|
146 |
Yan R X, Liang W P, Miao Q, et al. Corrosion mechanisms of high-entropy rare earth zirconate (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 exposed to CMAS and multi-medium (NaVO3 + CMAS) [J]. J. Eur. Ceram. Soc., 2024, 44: 3277
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|