Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1633-1640     CSTR: 32134.14.1005.4537.2024.132      DOI: 10.11902/1005.4537.2024.132
  研究报告 本期目录 | 过刊浏览 |
HF溶液中316L应力腐蚀开裂行为研究
张颛利1, 戴海龙2(), 张喆2, 石守稳2, 陈旭2()
1.中海油能源发展装备技术有限公司工业防护工程中心 天津 300457
2.天津大学化工学院 天津 300072
Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution
ZHANG Zhuanli1, DAI Hailong2(), ZHANG Zhe2, SHI Shouwen2, CHEN Xu2()
1. Industrial Protection Engineering Center, Cnooc Energy Development Equipment Technology Co., Ltd., Tianjin 300457, China
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
引用本文:

张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
Zhuanli ZHANG, Hailong DAI, Zhe ZHANG, Shouwen SHI, Xu CHEN. Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1633-1640.

全文: PDF(14066 KB)   HTML
摘要: 

采用慢应变速率拉伸试验(SSRT)和微观表征方法对316L不锈钢在HF溶液中的应力腐蚀开裂(SCC)机理进行了研究。316L不锈钢在HF溶液中表现出强烈的应力腐蚀敏感性,力学性能大大下降。应力腐蚀是由初期腐蚀产物膜撕裂以及随后力学和化学协同作用引发的点蚀共同导致的。316L不锈钢在HF溶液中表现出多源启裂特点,晶界、滑移台阶和δ铁素体与基体的相界均是裂纹萌生的主要位点。综上所述,机械变形诱发产物断裂是316L不锈钢在HF溶液中发生SCC的根本原因。

关键词 氢氟酸慢应变速率应力腐蚀开裂316L    
Abstract

The stress corrosion cracking (SCC) behavior of 316L stainless steel in HF solution was investigated by means of slow strain rate test (SSRT) and microscopy characterization. Results revealed that 316L stainless steel showed intense stress corrosion susceptibility in HF solution, correspondingly the mechanical property was greatly shortened for the tested steel. Stress corrosion is caused by the initial tear of the corrosion product film and the subsequent pitting corrosion caused by the synergistic action of mechanics and chemistry. The crack initiation of 316L stainless steel in HF solution shows the characteristics of multi-sites of initiation, i.e. the grain boundary, slip step and phase boundary between δ ferrite and matrix are the main sites of crack initiation. In all, mechanical deformation induced the rupture of corrosion products was essentially the inducement of SCC of 316L stainless steel in HF solution.

Key wordshydrofluoric acid    slow strain rate test    stress corrosion cracking    316L
收稿日期: 2024-04-23      32134.14.1005.4537.2024.132
ZTFLH:  TG172  
基金资助:国家重点研发计划(2022YFC3004500)
通讯作者: 戴海龙,E-mail:hldai@tju.edu.cn,研究方向为材料腐蚀和应力腐蚀;
陈旭,E-mail:xchen@tju.edu.cn,研究方向为结构完整性
Corresponding author: DAI Hailong, E-mail: hldai@tju.edu.cn
CHEN Xu, E-mail: xchen@tju.edu.cn
作者简介: 张颛利,男,1978年生,硕士,中级经济师
图1  SSRT试样几何尺寸
图2  316L不锈钢在空气和HF溶液中的应力-应变曲线和应力腐蚀敏感性
Environment

Ultimate strength

MPa

Yield strength MPa

Elongation

%

Air61927371.2
2%HF solution54222666.5
10%HF solution41321456.2
表1  316L不锈钢在空气和HF溶液中的基本力学参数
图3  316L不锈钢在空气和2%和10%HF溶液中SSRT后的断口形貌
图4  316L不锈钢在10%HF溶液中SSRT后的表面形貌
图5  316L不锈钢在10%HF溶液中SSRT后的表面撕裂特征及相应EDS的面扫描和线扫描结果
图6  316L不锈钢在10%HF溶液中SSRT后横截面和表面开裂特征SEM图
图7  316L不锈钢在10%HF溶液中SSRT后横截面开裂特征的EBSD结果
图8  δ铁素体引起的界面开裂和EDS线扫描结果以及δ铁素体和奥氏体两相纳米压痕结果
图9  316L不锈钢在HF溶液中的应力腐蚀开裂过程和蚀坑形成示意图
1 Schillmoller C M. Corrosion Resistance of Nickel-Containing Alloys in Hydrofluoric Acid, Hydrogen Fluoride and Fluorine [M]. Toronto: Nickel Institute, 1998
2 Dai H L, Shi S W, Guo C, et al. Stress corrosion cracking behavior of 316L SS in HF vapor environment based on corrosion degradation as a precursor [J]. Corros. Sci., 2022, 208: 110615
3 Dai H L, Zhang S Y, Li Y J, et al. Stress corrosion cracking behavior of 316 L manufactured by different additive manufacturing techniques in hydrofluoric acid vapor [J]. J. Mater. Sci. Technol., 2024, 191: 33
4 Chen X, Yang L, Dai H L, et al. Exploring factors controlling pre-corrosion fatigue of 316L austenitic stainless steel in hydrofluoric acid [J]. Eng. Fail. Anal., 2020, 113: 104556
5 Li M C, Zeng C L, Lin H C, et al. Effect of fluoride ions on passive performance of 316 stainless steel in acid media [J]. Acta. Metall. Sin., 2001, 37: 1083
5 (李谋成, 曾潮流, 林海潮 等. F-对酸性介质中316不锈钢钝化性能的影响 [J]. 金属学报, 2001, 37: 1083)
6 Pawel S J. Corrosion of high-alloy materials in aqueous hydrofluoric acid environments [J]. Corrosion, 1994, 50: 963
7 Dai H L, Shi S W, Guo C, et al. Pits formation and stress corrosion cracking behavior of Q345R in hydrofluoric acid [J]. Corros. Sci., 2020, 166: 108443
8 Rebak R B. Environmentally assisted cracking in the chemical process industry. stress corro-sion cracking of iron, nickel, and cobalt based alloys in chloride and wet HF services [A]. Kane R D. Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment, and Structures [M]. West Conshohocken: ASTM, 2000
9 Henthorne M. The slow strain rate stress corrosion cracking test—a 50 year retrospective [J]. Corrosion, 2016, 72: 1488
10 Li Y P, Fan X R, Tang N, et al. Effects of partially substituting cobalt for nickel on the corrosion resistance of a Ni–16Cr–15Mo alloy to aqueous hydrofluoric acid [J]. Corros. Sci., 2014, 78: 101
11 Hou Y H, Li Y P, Zhang C, et al. Effects of cold working on corrosion resistance of Co-modified Ni–16Cr–15Mo alloy in hydrofluoric acid solution [J]. Corros. Sci., 2014, 89: 258
12 Trompette J L. The comparative breakdown of passivity of tin by fluorides and chlorides interpreted through the ‘law of matching affinities’ concept [J]. Corros. Sci., 2015, 94: 288
13 Löchel B, Strehblow H H. Breakdown of passivity of iron by fluoride [J]. Electrochim. Acta, 1983, 28: 565
14 Zucchi F, Trabanelli G, Demertzis G. The intergranular stress corrosion cracking of a sensitized AISI 304 IN NaF and NaCl solutions [J]. Corros. Sci., 1988, 28: 69
15 Takemoto M, Shinogaya T, Shirai M, et al. External stress corrosion cracking (ESCC) of austenitic stainless steel [J]. Mater. Perform., 1985, 24: 6
16 Kappes M A. Localized corrosion and stress corrosion cracking of stainless steels in halides other than chlorides solutions: a review [J]. Corros. Rev., 2020, 38: 1
17 Theus G, Cels J R. Fluoride induced intergranular stress corrosion cracking of sensitized stainless steel [A]. Tedmon CS. Corrosion Problems in Energy Conversion and Generation [M]. Princeton, New Jersey: Corrosion Division, Electrochemical Society, 1974: 384
18 Shibata T, Haruna T, Oki T. Initiation and growth of intergranular stress corrosion cracks for sensitized 304 stainless steel depending on NaF concentration of aqueous solution [J]. Tetsu-to-Hagane, 1993, 79: 721
19 Cragnolino G, Macdonald D D. Intergranular stress corrosion cracking of austenitic stainless steel at temperatures below 100 C — a review [J]. Corrosion, 1982, 38: 406
20 Ward C T, Mathis D L, Staehle R W. Intergranular attack of sensitized austenitic stainless steel by water containing fluoride lons [J]. Corrosion, 1969, 25: 394
21 Shibata T, Oki T, Haruna T. Stress corrosion cracking susceptibility of sensitized type 304 stainless steel in NaF solution evaluated by SSRT [J]. Zairyo-to-Kankyo, 1993, 42: 15
22 Whorlow K M, Hutto Jr F B. Effects of fluoride and other halogen ions on the external stress corrosion cracking of Type 304 austenitic stainless steel [R]. Washington, DC: US Nuclear Regulatory Commission, 1997
23 Jennings H S. Materials for hydrofluoric acid service in the new millennium [A]. Corrosion 2001 [C]. Houston, Texas, 2001: NACE-01345
24 Degnan T F. Materials of construction for hydrofluoric acid and hydrogen fluoride [J]. Process Industry Corrosion, The Theory and Practice, NACE International, 1986: 275
25 Mazánová V, Heczko M, Škorík V, et al. Microstructure and martensitic transformation in 316L austenitic steel during multiaxial low cycle fatigue at room temperature [J]. Mater. Sci. Eng., 2019, 767A: 138407
26 Tang J H, Shi S W, Dai H L, et al. On the role of hydrogen in the stress corrosion cracking behavior of Q345R steel in HF vapor environment [J]. Int. J. Hydrog. Energy, 2023, 48: 28549
27 Lin J W, Chen F D, Liu F, et al. Hydrogen permeation behavior and hydrogen-induced defects in 316L stainless steels manufactured by additive manufacturing [J]. Mater. Chem. Phys., 2020, 250: 123038
28 Xu Y P, Liu F, Zhao S X, et al. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer [J]. Fusion Eng. Des., 2016, 113: 201
[1] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[2] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[3] 耿真真, 张钰柱, 杜小将, 吴汉辉. S2-Cl-316L奥氏体不锈钢的腐蚀钝化行为的协同作用[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[4] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[5] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[6] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[7] 李敏, 胡凌越, 胡科峰, 宋遥, 张泽群, 李宗欣, 张博威, 董超芳, 吴俊升. 316L不锈钢在深海环境中的缝隙腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[8] 商强, 满成, 逄昆, 崔中雨, 董超芳, 崔洪芝. 后热处理对不同含碳量SLM-316L不锈钢晶间腐蚀行为的作用机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[9] 李文桔, 张慧霞, 张宏泉, 郝福耀, 仝宏韬. 温度对钛合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[10] 张媛, 张弦, 陈思雨, 李腾, 刘静, 吴开明. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[11] 刘宇桐, 陈震宇, 朱忠亮, 冯瑞, 包汉生, 张乃强. 2.25Cr1Mo钢及其焊接接头在高温水蒸气中的应力腐蚀开裂敏感性研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[12] 刘保平, 张志明, 王俭秋, 韩恩厚, 柯伟. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 513-522.
[13] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[14] 柳皓晨, 范林, 张海兵, 王莹莹, 唐鋆磊, 白雪寒, 孙明先. 钛合金深海应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 175-185.
[15] 王淇萱, 吕文生, 杨鹏, 诸利一, 廖文景, 朱远乐. 尾矿库埋入式传感器不锈钢外壳腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 331-337.