|
|
封闭型耐蚀涂层的寿命预测模型研究 |
禹文娟1,2, 王天丛3, 赵东杨4, 向雪云3, 吴航3, 王文4( ) |
1.上海船舶工艺研究所 上海 200032 2.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001 3.东北大学材料科学与工程学院 沈阳 110819 4.中国科学院金属研究所 沈阳 110016 |
|
Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating |
YU Wenjuan1,2, WANG Tiancong3, ZHAO Dongyang4, XIANG Xueyun3, WU Hang3, WANG Wen4( ) |
1. Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, China 2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China 3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 4. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
Wenjuan YU,
Tiancong WANG,
Dongyang ZHAO,
Xueyun XIANG,
Hang WU,
Wen WANG.
Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1617-1624.
1 |
Zhang M, Xu H Y, Zeze A L P, et al. Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection [J]. Cem. Concr. Compos., 2022, 129: 104495
|
2 |
Lyon S B, Bingham R, Mills D J. Advances in corrosion protection by organic coatings: what we know and what we would like to know [J]. Prog. Org. Coat., 2017, 102: 2
|
3 |
Aljibori H S, Alamiery A, Kadhum A A H. Advances in corrosion protection coatings: a comprehensive review [J]. Int. J. Corros. Scale Inhib., 2023, 12: 1476
|
4 |
Knudsen O Ø, Skilbred A W B, Løken A, et al. Correlations between standard accelerated tests for protective organic coatings and field performance [J]. Mater. Today Commun., 2022, 31: 103729
|
5 |
Li S, Bi H C, Weinell C E, et al. A quantitative real-time evaluation of rust creep propagation in coating systems exposed to field testing and cyclic ageing test [J]. Prog. Org. Coat., 2023, 184: 107866
|
6 |
Pélissier K, Le Bozec N, Thierry D, et al. Evaluation of the long-term performance of marine and offshore coatings system exposed on a traditional stationary site and an operating ship and its correlation to accelerated test [J]. Coatings, 2022, 12: 1758
|
7 |
Martinez S, Šoić I, Golub V, et al. Comparative electrochemical impedance spectroscopy quantification of coating weathering, long-term Immersion, and salt spray test outcomes [J]. Corrosion, 2023, 79: 1029
|
8 |
LeBozec N, Thierry D, Le Calvé P, et al. Performance of marine and offshore paint systems: correlation of accelerated corrosion tests and field exposure on operating ships [J]. Mater. Corros., 2015, 66: 215
|
9 |
Appleman B R. Survey of accelerated test methods for anti-corrosive coating performance [J]. J. Coat. Technol., 1990, 67: 57
|
10 |
Zapponi M, Pérez T, Ramos C, et al. Prohesion and outdoors tests on corrosion products developed over painted galvanized steel sheets with and without Cr(VI) species [J]. Corros. Sci., 2005, 47: 923
|
11 |
Guseva O, Brunner S, Richner P. Service life prediction for aircraft coatings [J]. Polym. Degrad. Stab., 2003, 82: 1
|
12 |
Martin J W, Nguyen T, Byrd E, et al. Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus [J]. Polym. Degrad. Stab., 2002, 75: 193
|
13 |
Jacques L F E. Accelerated and outdoor/natural exposure testing of coatings[J]. Prog. Polym. Sci., 2000, 25: 1337
|
14 |
Kunce I, Królikowska A, Komorowski L. Accelerated corrosion tests in quality labels for powder coatings on galvanized steel—comparison of requirements and experimental evaluation [J]. Materials, 2021, 14: 6547
|
15 |
López -Ortega A, Bayón R, Arana J L. Evaluation of protective coatings for high-corrosivity category atmospheres in offshore applications [J]. Materials, 2019, 12: 1325
|
16 |
LeBozec N, Thierry D, Pelissier K. A new accelerated corrosion test for marine paint systems used for ship’s topsides and superstructures [J]. Mater. Corros., 2018, 69: 447
|
17 |
Shreepathi S, Guin A K, Naik S M, et al. Service life prediction of organic coatings: electrochemical impedance spectroscopy vs actual service life [J]. J. Coat. Technol. Res., 2011, 8: 191
|
18 |
Zhang S Y, Zhai Q Q, Li Y Q. Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts [J]. Reliab. Eng. Syst. Saf., 2023, 231: 109021
|
19 |
Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
|
20 |
Hinderliter B R, Croll S G, Tallman D E, et al. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties [J]. Electrochim. Acta, 2006, 51: 4505
|
21 |
Gao J, Li C, Feng H X, et al. In situ and dynamic observation of coating failure behavior [J]. Prog. Org. Coat. 2020, 138: 105387
|
22 |
Gao J, Hu W, Wang R, et al. Study on a multifactor coupling accelerated test method for anticorrosive coatings in marine atmospheric environments [J]. Polym. Test., 2021, 100: 107259
|
23 |
Zhang Z H, Wu J, Zhao X, et al. Life evaluation of organic coatings on hydraulic metal structures [J]. Prog. Org. Coat., 2020, 148: 105848
|
24 |
Ji H D, Ma X B, Cai Y K, et al. Degradation modeling and lifetime evaluation for organic anti-corrosion coatings using a three-stage electrochemical statistical model [J]. J. Polym. Environ., 2024, 32: 1046, doi: 10.1007/s10924-023-03015-5
|
25 |
LeBozec N, Carter J, Scholz T, et al. Round-robin evaluation of ISO 20340 annex a test method [A]. Proceedings of the CORROSION 2016 [C]. Vancouver, Canada, 2016: 6991
|
26 |
Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
|
26 |
(王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
doi: 10.11902/1005.4537.2023.375
|
27 |
Leidheiser H. Cathodic delamination of polybutadiene from steel-a review [J]. J. Adhes. Sci. Technol., 1987, 1: 79
|
28 |
Skar J I, Steinsmo U. Cathodic disbonding of paint films-transport of charge [J]. Corros. Sci., 1993, 35: 1385
|
29 |
Harun M K, Marsh J, Lyon S B. The effect of surface modification on the cathodic disbondment rate of epoxy and alkyd coatings [J]. Prog. Org. Coat., 2005, 54: 317
|
30 |
Touhsaent R E, Leidheiser H. A capacitance-resistance study of polybutadiene coatings on steel [J]. Corrosion, 1972, 28: 435
|
31 |
González S, Gil M A, Hernández J O, et al. Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating [J]. Prog. Org. Coat., 2001, 41: 167
|
32 |
Gray L G S, Appleman B R. EIS: electrochemical impedance spectroscopy [J]. J. Prot. Coat. Linings, 2003, 20: 66
|
33 |
Scully J R, Hensley S T. Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods [J]. Corrosion, 1994, 50: 705
|
34 |
Bauer D R. Interpreting weathering acceleration factors for automotive coatings using exposure models [J]. Polym. Degrad. Stab., 2000, 69: 307
|
35 |
Chong S L. A comparison of accelerated tests for steel bridge coatings in marine environments [J]. J. Prot. Coat. Linings, 1997, 14: 20
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|