Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (6): 1617-1624     CSTR: 32134.14.1005.4537.2023.383      DOI: 10.11902/1005.4537.2023.383
  研究报告 本期目录 | 过刊浏览 |
封闭型耐蚀涂层的寿命预测模型研究
禹文娟1,2, 王天丛3, 赵东杨4, 向雪云3, 吴航3, 王文4()
1.上海船舶工艺研究所 上海 200032
2.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
3.东北大学材料科学与工程学院 沈阳 110819
4.中国科学院金属研究所 沈阳 110016
Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating
YU Wenjuan1,2, WANG Tiancong3, ZHAO Dongyang4, XIANG Xueyun3, WU Hang3, WANG Wen4()
1. Shanghai Shipbuilding Technology Research Institute, Shanghai 200032, China
2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

禹文娟, 王天丛, 赵东杨, 向雪云, 吴航, 王文. 封闭型耐蚀涂层的寿命预测模型研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
Wenjuan YU, Tiancong WANG, Dongyang ZHAO, Xueyun XIANG, Hang WU, Wen WANG. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1617-1624.

全文: PDF(2128 KB)   HTML
摘要: 

以封闭型耐蚀涂层为研究对象,通过阴极剥离试验得到了阴极剥离抗力与涂层厚度和时间的函数关系,分析、论证了电化学阻抗表征涂层耐蚀性能的有效性。研究了涂层在循环老化过程中的电化学阻抗变化规律,分析了电化学阻抗与涂层厚度、老化时间之间的数值关系,并建立了封闭型涂层的寿命预测模型。结果表明,涂层寿命预测值与涂层的目标使用寿命值具有可比性。

关键词 封闭型耐蚀涂层电化学阻抗阴极剥离循环老化寿命预测    
Abstract

For a barrier-type corrosion-resistant coating on Q235 carbon steel plate, the functional relationship of the cathodic delamination resistance versus the coating thickness and testing time may be acquired by means of cathodic delamination tests according to standards such as ISO 12944-6, ISO 11507 and ISO 9227 etc. The feasibility of using electrochemical impedance as an indicator for coating performance was analyzed and demonstrated. The variation of the electrochemical impedance of the coating during cyclic aging process was further assessed, and the numerical relationship of electrochemical impedance against the coating thickness and aging time was analyzed. Finally a lifetime prediction model for the coating was established. The results showed that the predicted lifetime shows a good comparability with the designed service lifetime of the barrier-type corrosion-resistant coating.

Key wordsbarrier corrosion-resistant coating    electrochemical impedance    cathodic delamination    cyclic aging    lifetime prediction
收稿日期: 2023-12-05      32134.14.1005.4537.2023.383
ZTFLH:  TG174  
基金资助:工业和信息化部高技术船舶科研项目(MC-202003-Z01-02)
通讯作者: 王文,E-mail: wen@imr.ac.cn,研究方向为腐蚀与防护
Corresponding author: WANG Wen, E-mail: wen@imr.ac.cn
作者简介: 禹文娟,女,1990年生,硕士,工程师
图1  阴极剥离试样EIS测量位置示意图
图2  阴极剥离宽度与涂层厚度、测试周期的拟合曲面
图3  经历9个测试周期后阴极剥离宽度计算值与涂层厚度的关系

Coating thickness

μm

Testing cycle

Delamination distance

mm

Impedance

1010 Ω·cm2

260-28011.18.81
35.96.91
57.96.14
78.23.10
98.51.52
300-32011.817.79
33.89.80
56.37.03
795.28
994.31
350-3701125.73
34.113.17
56.58.58
78.27.25
97.16.44
表1  涂层电化学阻抗值与阴极剥离宽度值
ImpedanceDelamination distance
ImpedancePearson coefficient1-0.81
p value/0.0002
Delamination distancePearson coefficient-0.811
p value0.0002/
表2  涂层电化学阻抗与阴极剥离宽度的线性相关性分析
图4  经历不同阴极剥离测试周期后涂层的附着力

Exposure time

h

Coating thickness

μm

Coating impedance

1010 Ω·cm2

lnZ
025713.0025.60
16827612.6325.56
6722346.2024.85
11762476.5324.90
13442234.3824.50
15122555.9324.81
16802858.3625.15
18482645.1324.66
20162363.7324.34
21842524.7924.59
25202765.7224.77
26882232.5123.95
表3  涂层厚度、电化学阻抗与测试时间
图5  电化学阻抗对数与涂层厚度、测试时间的拟合曲面
图6  涂层电化学阻抗(计算值)的对数与测试时间的关系
Prime/topcoat

Dry film thickness

μm

Design service life

a

Predicted service life

a

Jotaprime 510 / Hardtop XP1 × 100 + 2 × 50 or 1 × 125 + 2 × 506-108.1-9.3
1 × 150 + 2 × 50 or 1 × 175 + 2 × 5010-1211.1-12.9
1 × 200 + 2 × 50 or 2 × 100 + 2 × 5012-1516.9
表4  预测寿命值与涂层目标使用寿命值比较
1 Zhang M, Xu H Y, Zeze A L P, et al. Coating performance, durability and anti-corrosion mechanism of organic modified geopolymer composite for marine concrete protection [J]. Cem. Concr. Compos., 2022, 129: 104495
2 Lyon S B, Bingham R, Mills D J. Advances in corrosion protection by organic coatings: what we know and what we would like to know [J]. Prog. Org. Coat., 2017, 102: 2
3 Aljibori H S, Alamiery A, Kadhum A A H. Advances in corrosion protection coatings: a comprehensive review [J]. Int. J. Corros. Scale Inhib., 2023, 12: 1476
4 Knudsen O Ø, Skilbred A W B, Løken A, et al. Correlations between standard accelerated tests for protective organic coatings and field performance [J]. Mater. Today Commun., 2022, 31: 103729
5 Li S, Bi H C, Weinell C E, et al. A quantitative real-time evaluation of rust creep propagation in coating systems exposed to field testing and cyclic ageing test [J]. Prog. Org. Coat., 2023, 184: 107866
6 Pélissier K, Le Bozec N, Thierry D, et al. Evaluation of the long-term performance of marine and offshore coatings system exposed on a traditional stationary site and an operating ship and its correlation to accelerated test [J]. Coatings, 2022, 12: 1758
7 Martinez S, Šoić I, Golub V, et al. Comparative electrochemical impedance spectroscopy quantification of coating weathering, long-term Immersion, and salt spray test outcomes [J]. Corrosion, 2023, 79: 1029
8 LeBozec N, Thierry D, Le Calvé P, et al. Performance of marine and offshore paint systems: correlation of accelerated corrosion tests and field exposure on operating ships [J]. Mater. Corros., 2015, 66: 215
9 Appleman B R. Survey of accelerated test methods for anti-corrosive coating performance [J]. J. Coat. Technol., 1990, 67: 57
10 Zapponi M, Pérez T, Ramos C, et al. Prohesion and outdoors tests on corrosion products developed over painted galvanized steel sheets with and without Cr(VI) species [J]. Corros. Sci., 2005, 47: 923
11 Guseva O, Brunner S, Richner P. Service life prediction for aircraft coatings [J]. Polym. Degrad. Stab., 2003, 82: 1
12 Martin J W, Nguyen T, Byrd E, et al. Relating laboratory and outdoor exposures of acrylic melamine coatings: I. Cumulative damage model and laboratory exposure apparatus [J]. Polym. Degrad. Stab., 2002, 75: 193
13 Jacques L F E. Accelerated and outdoor/natural exposure testing of coatings[J]. Prog. Polym. Sci., 2000, 25: 1337
14 Kunce I, Królikowska A, Komorowski L. Accelerated corrosion tests in quality labels for powder coatings on galvanized steel—comparison of requirements and experimental evaluation [J]. Materials, 2021, 14: 6547
15 López -Ortega A, Bayón R, Arana J L. Evaluation of protective coatings for high-corrosivity category atmospheres in offshore applications [J]. Materials, 2019, 12: 1325
16 LeBozec N, Thierry D, Pelissier K. A new accelerated corrosion test for marine paint systems used for ship’s topsides and superstructures [J]. Mater. Corros., 2018, 69: 447
17 Shreepathi S, Guin A K, Naik S M, et al. Service life prediction of organic coatings: electrochemical impedance spectroscopy vs actual service life [J]. J. Coat. Technol. Res., 2011, 8: 191
18 Zhang S Y, Zhai Q Q, Li Y Q. Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts [J]. Reliab. Eng. Syst. Saf., 2023, 231: 109021
19 Bierwagen G, Tallman D, Li J P, et al. EIS studies of coated metals in accelerated exposure [J]. Prog. Org. Coat., 2003, 46: 149
20 Hinderliter B R, Croll S G, Tallman D E, et al. Interpretation of EIS data from accelerated exposure of coated metals based on modeling of coating physical properties [J]. Electrochim. Acta, 2006, 51: 4505
21 Gao J, Li C, Feng H X, et al. In situ and dynamic observation of coating failure behavior [J]. Prog. Org. Coat. 2020, 138: 105387
22 Gao J, Hu W, Wang R, et al. Study on a multifactor coupling accelerated test method for anticorrosive coatings in marine atmospheric environments [J]. Polym. Test., 2021, 100: 107259
23 Zhang Z H, Wu J, Zhao X, et al. Life evaluation of organic coatings on hydraulic metal structures [J]. Prog. Org. Coat., 2020, 148: 105848
24 Ji H D, Ma X B, Cai Y K, et al. Degradation modeling and lifetime evaluation for organic anti-corrosion coatings using a three-stage electrochemical statistical model [J]. J. Polym. Environ., 2024, 32: 1046, doi: 10.1007/s10924-023-03015-5
25 LeBozec N, Carter J, Scholz T, et al. Round-robin evaluation of ISO 20340 annex a test method [A]. Proceedings of the CORROSION 2016 [C]. Vancouver, Canada, 2016: 6991
26 Wang T C, Zhao D Y, Xiang X Y, et al. Degradation behavior of an epoxy corrosion-resistant coating in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1361
26 (王天丛, 赵东杨, 向雪云 等. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1361)
doi: 10.11902/1005.4537.2023.375
27 Leidheiser H. Cathodic delamination of polybutadiene from steel-a review [J]. J. Adhes. Sci. Technol., 1987, 1: 79
28 Skar J I, Steinsmo U. Cathodic disbonding of paint films-transport of charge [J]. Corros. Sci., 1993, 35: 1385
29 Harun M K, Marsh J, Lyon S B. The effect of surface modification on the cathodic disbondment rate of epoxy and alkyd coatings [J]. Prog. Org. Coat., 2005, 54: 317
30 Touhsaent R E, Leidheiser H. A capacitance-resistance study of polybutadiene coatings on steel [J]. Corrosion, 1972, 28: 435
31 González S, Gil M A, Hernández J O, et al. Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating [J]. Prog. Org. Coat., 2001, 41: 167
32 Gray L G S, Appleman B R. EIS: electrochemical impedance spectroscopy [J]. J. Prot. Coat. Linings, 2003, 20: 66
33 Scully J R, Hensley S T. Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods [J]. Corrosion, 1994, 50: 705
34 Bauer D R. Interpreting weathering acceleration factors for automotive coatings using exposure models [J]. Polym. Degrad. Stab., 2000, 69: 307
35 Chong S L. A comparison of accelerated tests for steel bridge coatings in marine environments [J]. J. Prot. Coat. Linings, 1997, 14: 20
[1] 徐桂芝, 杜小泽, 胡晓, 宋洁. Pt涂层对TA4双极板在质子交换膜制氢电解池阳极环境中的电化学行为与界面导电性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1370-1376.
[2] 王天丛, 赵东杨, 向雪云, 吴航, 王文. 一种环氧耐蚀涂层在NaCl溶液中的劣化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1361-1369.
[3] 刘喆, 邓成满, 魏军胜, 夏大海. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[4] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[5] 李卓玄, 曹艳辉, 李崇杰, 李辉, 张小明, 雍兴跃. 耦接件涂层失效程度与其力学损伤之间的关系[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[6] 赵国仙, 刘冉冉, 丁浪勇, 张思琦, 郭梦龙, 王映超. 温度对5Cr钢在模拟油田高温高压环境中CO2 腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[7] 李春霖, 史洪微, 梁国平, 李丽, 王浩, 王伟, 刘福春, 韩恩厚. 高速列车用聚氨酯面漆耐蚀性能和老化机制研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1383-1391.
[8] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[9] 胡杰珍, 上官桔钰, 邓培昌, 冯绮蓝, 王贵, 王沛林. 基于阵列电极技术研究藤壶附着对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[10] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[11] 刘明, 王杰, 朱春晖, 张延晓. 3D打印NiTi形状记忆合金在模拟不同口腔环境中电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[12] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[13] 王通, 王巍. 聚二甲基硅氧烷涂层自修复过程中的弛豫时间分布研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 337-344.
[14] 袁世成, 吴艳峰, 徐长慧, 王兴奇, 冷哲, 杨延格. 多羟基超分散剂对水性环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 289-300.
[15] 毛英畅, 祝钰, 孙圣凯, 秦真波, 夏大海, 胡文彬. 5083铝合金在模拟海洋浪花飞溅区的局部腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 47-54.